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Obliquely Reflected Brownian Motion in a Cone

I Oblique reflections constant along the edges

I Drift
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From quadrant to cones

linear transform

quadrant ←→ cone

continuous case (random walks) 6= discrete case (Brownian)

4 / 44



Persistence and absorption probability

] Goal 1

I Study the absorption probability at the apex of the cone

Absorption Persistence
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Escape probability

] Goal 2

I Study the escape probability along an axis
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Recurrence/Transience

According to the parameters of the model Zt is :

I Recurrent (stationary distribution /invariant measure)
↪→ Proportion of time that the process spends in the set A

π(A) = lim
t→∞

E
[

1

t

∫ t

0
1A(Zu)du

]

I Transient Zt →∞ (Green measures)
↪→ Quantity of time that the process spends in A starting from z0

g z0(A) = Ez0

[∫ ∞
0

1A(Zu)du

]
=

∫ ∞
0

pt(z0,A)dt

] Goal 3

I Study Green’s functions
I Study Martin boundary and harmonic functions
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Analytic approach

Probabilistic questions

Analytic methods and tools
I Kernel functional equation (generating function, Laplace transform)

I Boundary value problem (Carleman, Riemann-Hilbert, Sokhotski–Plemelj)

I Analytic combinatorics (singularity, transfer lemmas, saddle point method, Tutte’s

invariants)

Results
I Exact expressions (countour integrals, hypergeometric functions)

I Asymptotics and Martin boundary (harmonic functions)

I Algebraic nature (rational, algebraic, DF, DA)

Approach developed in the discrete setting (random walks in the
quadrant) by G. Fayolle et V. Malyshev in the seventies

↪→ continuous setting (Brownian)
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Plan

1 Obliquely reflected Brownian motion in the quadrant
Absorption at the apex
Escape along an axis
Green’s functions

2 Analytic approach
Functional equation
Boundary value problem
Explicit expression

3 Martin and Poisson boundary
Asymptotics
Saddle point method and transfer lemma
Martin and Poisson boundary, harmonic functions
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Local time

I Bt Brownian motion

I Define the local time by

Lat = lim
ε→0

1

ε

∫ t

0
1[a,a+ε](Bs)ds

↪→ density of time spends in a before t

Occupation time formula∫ t

0
f (Bs)ds =

∫
R
f (a)Latda
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Reflection in dimension 1

I |Bt | : Reflected Brownian motion in dimension 1 = absolute
value of Bt

I Itô’s formula

f (Bt) = f (B0) +

∫ t

0
f ′(Bs)dBs +

1

2

∫ t

0
f ′′(Bs)ds

↪→ Applied to f = | · |, f ′ = sgn et f ′′ = 2δ0

⇒ |Bt | = 0 +

∫ t

0
sgn(Bs)dBs︸ ︷︷ ︸

Brownian motion
Wt

+
1

2

∫ t

0
2δ0(Bs)ds︸ ︷︷ ︸∫

R δ0(a)Lat da=L0
t

occupation time formula

Tanaka’s formula

|Bt | = Wt + L0
t

Wt Brownian motion

L0
t local time in 0
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Obliquely reflected Brownian motion with drift in R2
+

Model parameters

I Wt Planar Brownian motion, covariance
Σ = ( σ11 σ12

σ12 σ22 )

I µ = ( µ1
µ2 ) drift

I R = (R1,R2) =
(

1 r2
r1 1

)
reflection matrix

Definition (Semimartingale Reflected Brownian Motion)

We define a SRBM starting from z0 by

Zt = z0 + Wt + µt + RLt ∈ R2
+

where Lit is a continuous and increasing process which increase
only when the process hit an axis.

↪→ Lt is the local time on the axis ↪→ Skorokhod problem
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Obliquely reflected Brownian motion with drift in R2
+

Theorem (Reiman, Taylor, Williams, 1988 et 1993)

Such a process Zt exists (or persist) for all t > 0
⇔ r1, r2 > 0 or 1− r1r2 > 0
⇔ ∃ convex combination of R1 and R2 which belongs to R2

+.

Absorption at the apex

Otherwise, Zt can reach the apex and get stuck : absorption

I Existence ∀t I Do not exist ∀t

Persistence Absorption at the apex
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Persistence and absorption

Assume that r1, r2 6 0 and 1− r1r2 6 0
i.e. absorption is possible (persistence ∀t is not certain)

pA(z0) absorption probability
↪→ function of the starting point z0

Absorption and persistence probability (2021, Ernst, F.)

Either the process is absorbed in a finite time or it escapes to
infinity.

pA(z0) = 1− P(u,v)

(
lim
t→∞

Zt =∞
)
.

I If µ < 0 then pA(z0) = 1 I If µ > 0 then pA(z0) ∈ (0, 1)

Goal ]1

Compute pA(z0)
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Escape and absorption

x is the starting point

Absorption Escape & Persistence
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Recurrence / Transience

Proposition (D. Hobson et L. Rogers, 1993)

Recurrent ⇔ 1− r1r2 > 0, µ1 − r2µ2 6 0, µ2 − r1µ1 6 0

Transient otherwise

I Competition between drift and reflection vectors

Recurrent
case

Transient
case

17 / 44



Escape along an axis

Transient case, two ways of escape to infinity :

I The two coordinates tend to infinity ⇔ µ1 > 0 et µ2 > 0
I Along one of the axes ⇔ µ1 < 0 ou µ2 < 0

p1(z0) escape probability along the horizontal axis
p2(z0) escape probability along the vertical axis

↪→ Most of the time p1(z0) = 0 or 1

Escape probability (2020+, Fomichov, F., Ivanovs)

Assume that µ < 0, r1, r2 > 0, r1r2 − 1 > 0, µ1 − r2µ2 > 0,

µ2 − r1µ1 > 0

p1(z0) + p2(z0) = 1 et p1(z0) et p2(z0) ∈ (0, 1)
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Goal ]2

Compute p1(z0)
and p2(z0)
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Green’s functions

Transient case

Green’s functions

g z0(z)dz = Ez0

∫ ∞
0

1dz(Zu)du

=

∫ ∞
0

pt(z0, dz)dt

Green’s functions ont the boundary
hz0
i (z)

hz0
i (z)dz = Ez0

∫ ∞
0

1dz(Zu)dLiu

I Quantity of time spend in a set Goal ]3

Study g and hi

Operators associated to Green’s functions

Gf (z0) = Ez0

∫∞
0 f (Zt )dt =

∫
R2

+
f (z)gz0 (z)dz Hiφi (z0) = Ez0

∫∞
0 φi (Zt )dLit =

∫
R2

+
φi (z)h

z0
i (z)dz
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PDE with oblique Neumann conditions

PDE : Green’s functions

Green’s functions are fundamental solutions of PDE with oblique
Neumann conditions in the quadrant :{

Lu = −f in the quadrant où Lf = 1
2
∇ · Σ∇+ µ · ∇

∂Ri
u = φi on the boundary where ∂Ri = R i · ∇

Solution : u = Gf + H1φ1 + H2φ2

Absorption probability pA{
LpA = 0

∂Ri
pA = 0

et

{
pA(0) = 1

lim
∞

pA = 0

Escape probability p1 (abscissa){
Lp1 = 0

∂Ri
p1 = 0

et

lim
u∞

p1(u, 0) = 1

lim
v∞

p1(0, v) = 0
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Plan

1 Obliquely reflected Brownian motion in the quadrant
Absorption at the apex
Escape along an axis
Green’s functions

2 Analytic approach
Functional equation
Boundary value problem
Explicit expression

3 Martin and Poisson boundary
Asymptotics
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Key steps

Analytic approach

Find a functional equation

Study the kernel (Riemann surface, group)

Continue analytically generating functions

Establish a boundary value problem

Solve it to determine an explicit formula (Sokhotski–Plemelj,

invariants)

Find the asymptotics (singularities, transfer lemmas, saddle point

method)

22 / 44



Laplace transforms

I Discret case : generating functions of Green’s functions g i0,j0
i ,j

on Z2
+ is the generating series

∑
Z2

+
g i0,j0
i ,j x iy j .

I Continuous case :

Laplace transform of the Green’s function

L(x , y) =

∫∫
R2

+

exu+yvg z0(u, v)dudv

On the boundaries we define

L2(x) =

∫
R+

exuhz0
2 (u)du, L1(y) =

∫
R+

eyvhz0
1 (v)dv

I Similarly, we define the Laplace transform :

L̃, L̃1, L̃2 of the absorption probability pA,

L̂, L̂1, L̂2 of the escape probability along the abscissa p1.
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Functional equation

This equation binds together the Laplace transform of Green’s functions.

Functional equation (2020, F.)

−K (x , y)L(x , y) = K1(x , y)L1(y) + K2(x , y)L2(x) + e(x ,y)·z0

where
K (x , y) = 1

2 (σ11x
2 + σ22y

2 + 2σ12xy) + µ1x + µ2y ,

K1(x , y) = x + r1y ,

K2(x , y) = r2x + y .

I Connect what happens in the quadrant and on the boundaries.

I The function K is called the kernel.

I The term e(x,y)·z0 contains the dependence to the starting z0.

Proof : Itô formula, PDE.
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Functional equations

Green’s functions (2020, F.)

−K (x , y)L(x , y) = K1(x , y)L1(y) + K2(x , y)L2(x) + e(x ,y)·z0

Absorption probability (2021, Ernst, F.)

−K (x , y)L̃(x , y) = K̃1(x , y)L̃1(y) + K̃2(x , y)L̃2(x)

Escape probability (2020+, Fomichov, F., Ivanovs)

−K (x , y)L̂(x , y) = K̃1(x , y)L̂1(y) + K̃2(x , y)L̂2(x) + cp1(0)

K (x , y) =
1

2
(σ11x

2 + σ22y
2 + 2σ12xy) + µ1x + µ2y ,

K1(x , y) = x + r1y , K2(x , y) = r2x + y ,

K̃1(x , y) =
r2x + y

2
+ σ12x + µ2, K̃2(x , y) =

r1y + x

2
+ σ12y + µ1.

Proof : Itô/Dynkin formula, IPP and PDE.
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What is a boundary value problem ?

A boundary value problem is made of two conditions :

a regularity condition on a set

a boundary condition

Example :
1 I is meromorphic on the

unit disc D has one single
poleor order one in 0

2 I (x̄) = I (x) for x ∈ U
unit circle

The solution (up to constants) is I (x) = x +
1

x
.

I is a conformal gluing function which unite the upper and the
lower part of U.
I is an invariant for the conjugation on the boundary U.
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Boundary value problem

Boundary value problem (2020, F.)

1 L1 is analytic on GR and tends to 0 at infinity ;

2 L1 satisfy the boundary condition

L1(y) = G (y)L1(y) + g(y), ∀y ∈ R.

G and g depend of
parameters

R is an hyperbola defined
by the kernel
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Boundary value problems

Green’s functions (2020, F.)

L1(y) = G (y)L1(y) + g(y), ∀y ∈ R.

Absorption probability (2021, Ernst, F.)

L̃1(y) = G̃ (y)L̃1(y), ∀y ∈ R.

Escape probability (2020, Fomichov, F., Ivanovs)

L̂1(y) = Ĝ (y)L̂1(y) + ĝ(y), ∀y ∈ R.

Preuve : Cancel the kernel in the functional equation.
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Conformal gluing function

Conformal gluing function W unite the upper and the lower
part of the hyperbola R

W (y) = Tπ
β

(
− 2y − (y+ + y−)

y+ − y−

)
β = arccos

(
−σ12√
σ11σ22

)
in the angle of the cone

Tπ
β

is a generalized Tchebychev polynomial

Tπ
β

(x) = cos(πβ arccos(x)) = 1
2

{(
x+
√
x2 − 1

)π
β +
(
x−
√
x2 − 1

)π
β

}
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From Carleman to Riemann

Carleman boundary value problem −→ Riemann boundary value problem

IL̃1(y) = G̃ (y)L̃1(y),∀y ∈ R

M := L̃1 ◦W−1 and

M+ and M− the upper and
lower limit M on [0, 1]

H := G̃ ◦W−1

I M+(t) = H−(t)M−(t),∀t ∈ [0, 1]
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Sokhotski–Plemelj formulae

We define for z ∈ C \ L

F (z) :=
1

2iπ

∫
L

f (t)

t − z
dt

F is sectionaly analytic on C \ L
F+ and F− are limits of F on both parts of L

Sokhotski–Plemelj formula

F+(t)− F−(t) = f (t)

M = eF and f = lnH ⇒ M+ = H−M−

Solution of the Riemann boundary value problem

I If M+ = H−M− then

M = exp
1

2iπ

∫
L

lnH(t)

t − z
dt
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Explicit expression

Absorption probability (2021, Ernst, F.)

L̃1(y) =
W ′(0)

W (y)−W (0)

(
W (0)−W (p)

W (y)−W (p)

)−χ
exp

{
1

2iπ

∫
R−

logG (t)
W ′(t)

W (t)−W (y)
dt

}
I Inversion of the Laplace transform L̃1

↪→ absorption probability pA(z0)

Escape probability and Green’s functions

Boundary value problems satisfied by L1 and L̂1 are
non homogeneous
↪→ More complicated formulas
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Remarkable cases

Escape probability along abscissa
(2020+, Fomichov, F., Ivanovs)

Starting from the origin and with identity
covariance :

p1(0) =
r1(r2µ2 − µ1)(µ2 + r2µ1)

µ1µ2(r1r2 − 1)(r1 + r2)
.

Dual skew symmetry (2021, Ernst, F.)

Following statements are equivalent :

1 Exponential absorption probability,

i.e. ∃v ∈ R2 such that pA(z0) = ez0·v

2 Reflection vectors are opposite,
i.e. r11r22 − r21r12 = 0

33 / 44



Remarkable cases

Dual skew symmetry in an orthant (2022, F., Raschel)

Following statements are equivalent :

1 Absorption probability of product form
i.e. there exist f1, · · · , fn such that f (z) = f1(z1) · · · fn(zn)

2 Exponential absorption probability

i.e. ∃v ∈ Rn tel que pA(z) = ez·v

3 Reflection vectors are coplanar
i.e. detR = 0
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Asymptotics

I Bivariate asymptotics of Green’s
functions along each directions

g z0(r cosα, r sinα) ∼
r→∞
α→α0

?

Method :

Transfer lemma (study of singularities)

Saddle point method (inversion of Laplace transform)
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Transfer lemmas and sadlle point method

Transfer lemma

L1 Laplace transform of h1

a the smallest singularity and
has order k

L1(z) ∼ c

(a− z)k

I Then,

h1(x) ∼
x→∞

c

Γ(k)
xk−1e−ax

Saddle point method

f and g holomorphic

a critic point
f ′(a) = 0 et f ′′(a) 6= 0

I Then, for a contour C∫
C
g(z)exf (z)dz ∼

x→∞

g(a)

√
2π

−f ′′(a)
x−

1
2 e−ax
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Poles and saddle point

E := {(x , y) ∈ R2 : K (x , y) = 0} ellipse

Poles ηθ∗ et ζθ∗∗ Saddle point θ(α)

Analytic combinatorics to several variables
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Results

Asymptotis of Green’s functions (2021, Ernst, F.)

Let α0 ∈ (0, π/2). We have

g z0(r cosα, r sinα) ∼
r→∞
α→α0

Crκe−r(cosα,sinα)·τ(α)

where :

Critical exponent κ equal to −3/2, −1/2, 0 or 1.

The decay rate τ(α) ∈ R2 comes from poles or from the
saddle point. That is : ηθ∗, ζθ∗∗ or θ(α).
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Asymptotics according to the direction : several cases
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Heuristic of Martin and Poisson boundary
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Heuristic of Martin and Poisson boundary

41 / 44



Heuristic of Martin and Poisson boundary
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Harmonic functions : probabilistic interpretations

I Trivial Martin boundary (one point) ⇔ constants are the only
harmonic functions

Transient reflected Brownian motion in the quadrant

I Two points Martin boundary ⇔ Escape probability p1 and p2

are the only harmonic functions (p1 + p2 = 1)
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Martin boundary in the quadrant
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Thank you for your attention !
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