Reflected Brownian motion in a cone: the transient case

Persistence, escape and absorption probabilities,

Green's functions and Martin's boundary

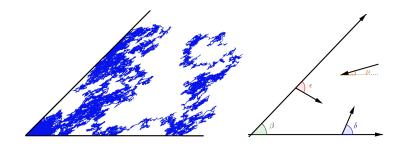
Sandro Franceschi

Télécom SudParis, Institut Polytechnique de Paris

Saumur, 15 mars 2022

Introduction

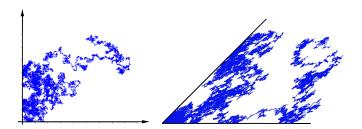
Obliquely Reflected Brownian Motion in a Cone



Oblique reflections constant along the edges

Drift

From quadrant to cones



linear transform

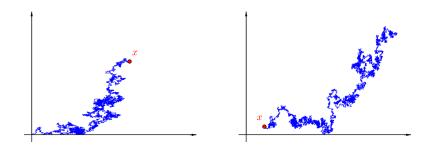
$\textbf{quadrant}\longleftrightarrow \textbf{cone}$

continuous case (random walks) \neq discrete case (Brownian)

Persistence and absorption probability

Goal 1

Study the absorption probability at the apex of the cone

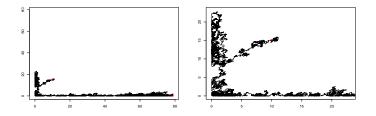


Absorption

Persistence

♯ Goal 2

Study the escape probability along an axis



Recurrence/Transience

According to the parameters of the model Z_t is :

► Recurrent (stationary distribution /invariant measure)
→ Proportion of time that the process spends in the set A

$$\pi(A) = \lim_{t \to \infty} \mathbb{E}\left[\frac{1}{t} \int_0^t \mathbb{1}_A(Z_u) \mathrm{d}u\right]$$

• Transient $Z_t \rightarrow \infty$ (Green measures)

 \hookrightarrow Quantity of time that the process spends in A starting from z_0

$$g^{z_0}(A) = \mathbb{E}_{z_0}\left[\int_0^\infty \mathbb{1}_A(Z_u) \mathrm{d} u\right] = \int_0^\infty p_t(z_0, A) \mathrm{d} t$$

Goal 3

- Study Green's functions
- Study Martin boundary and harmonic functions

Analytic approach

Probabilistic questions

• Analytic methods and tools

- Kernel functional equation (generating function, Laplace transform)
- Boundary value problem (Carleman, Riemann-Hilbert, Sokhotski-Plemelj)
- Analytic combinatorics (singularity, transfer lemmas, saddle point method, Tutte's invariants)

Results

- Exact expressions (countour integrals, hypergeometric functions)
- Asymptotics and Martin boundary (harmonic functions)
- Algebraic nature (rational, algebraic, DF, DA)

Approach developed in the **discrete** setting (random walks in the quadrant) by G. FAYOLLE et V. MALYSHEV in the seventies

 \hookrightarrow continuous setting (Brownian)

Plan

Obliquely reflected Brownian motion in the quadrant

- Absorption at the apex
- Escape along an axis
- Green's functions

2 Analytic approach

- Functional equation
- Boundary value problem
- Explicit expression

3 Martin and Poisson boundary

- Asymptotics
- Saddle point method and transfer lemma
- Martin and Poisson boundary, harmonic functions

Plan

Obliquely reflected Brownian motion in the quadrant

- Absorption at the apex
- Escape along an axis
- Green's functions

2 Analytic approach

- Functional equation
- Boundary value problem
- Explicit expression

3 Martin and Poisson boundary

- Asymptotics
- Saddle point method and transfer lemma
- Martin and Poisson boundary, harmonic functions

 \triangleright B_t Brownian motion

▶ Define the **local time** by

$$L_t^{a} = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_0^t \mathbf{1}_{[a,a+\epsilon]}(B_s) \mathrm{d}s$$

 \hookrightarrow density of time spends in *a* before *t*

Occupation time formula

$$\int_0^t f(B_s) \mathrm{d}s = \int_{\mathbb{R}} f(a) L_t^a \mathrm{d}a$$

Reflection in dimension 1

▶ $|B_t|$: **Reflected Brownian motion** in dimension 1 = absolute value of B_t

Itô's formula

$$f(B_t) = f(B_0) + \int_0^t f'(B_s) dB_s + \frac{1}{2} \int_0^t f''(B_s) ds$$

 $\hookrightarrow \mathsf{Applied} \text{ to } f = |\cdot|, \ f' = \mathsf{sgn} \text{ et } f'' = 2\delta_0$

$$\Rightarrow |B_t| = 0 + \underbrace{\int_0^t \operatorname{sgn}(B_s) dB_s}_{\operatorname{Brownian motion}} + \underbrace{\frac{1}{2} \int_0^t 2\delta_0(B_s) ds}_{\underset{\substack{\int_{\mathbb{R}} \delta_0(a) L_t^a da = L_t^0\\ \text{occupation time formula}}}$$

Tanaka's formula

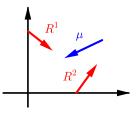
$$|B_t| = W_t + L_t^0$$

- W_t Brownian motion
- L_t^0 local time in 0

Obliquely reflected Brownian motion with drift in \mathbb{R}^2_+

Model parameters

- ► W_t Planar Brownian motion, covariance $\Sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{pmatrix}$
- ▶ $\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$ drift
- $R = (R_1, R_2) = \begin{pmatrix} 1 & r_2 \\ r_1 & 1 \end{pmatrix}$ reflection matrix



Definition (Semimartingale Reflected Brownian Motion)

We define a SRBM starting from z_0 by

$$Z_t = z_0 + W_t + \mu t + RL_t \in \mathbb{R}^2_+$$

where L_t^i is a continuous and increasing process which increase only when the process hit an axis.

 $\hookrightarrow L_t$ is the **local time** on the axis \hookrightarrow **Skorokhod** problem

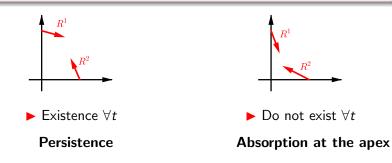
Obliquely reflected Brownian motion with drift in \mathbb{R}^2_+

Theorem (Reiman, Taylor, Williams, 1988 et 1993)

Such a process Z_t exists (or persist) for all $t \ge 0$ $\Leftrightarrow r_1, r_2 > 0$ or $1 - r_1 r_2 > 0$ $\Leftrightarrow \exists$ convex combination of R^1 and R^2 which belongs to \mathbb{R}^2_+ .

Absorption at the apex

Otherwise, Z_t can reach the apex and get stuck : absorption



Persistence and absorption

- Assume that $r_1, r_2 \leq 0$ and $1 r_1 r_2 \leq 0$
 - i.e. **absorption** is possible (persistence $\forall t$ is not certain)
- *p*_A(*z*₀) absorption probability
 → function of the starting point *z*₀

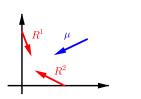
Absorption and persistence probability (2021, ERNST, F.)

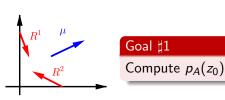
Either the process is absorbed in a finite time or it escapes to infinity.

$$\mathcal{P}_{\mathcal{A}}(z_0) = 1 - \mathbb{P}_{(u,v)}\left(\lim_{t\to\infty} Z_t = \infty\right).$$

▶ If $\mu < 0$ then $p_A(z_0) = 1$

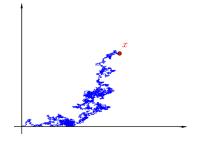
$$ig > \mathsf{lf}\ \mu > \mathsf{0}$$
 then $p_{\mathcal{A}}(z_0) \in (0,1)$

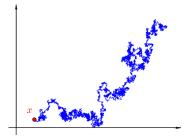




Escape and absorption

x is the starting point





Absorption

Escape & Persistence

Recurrence / Transience

Proposition (D. Hobson et L. Rogers, 1993)

- Recurrent $\Leftrightarrow 1 r_1 r_2 > 0$, $\mu_1 r_2 \mu_2 \leqslant 0$, $\mu_2 r_1 \mu_1 \leqslant 0$
- Transient otherwise

Competition between drift and reflection vectors R^1 Recurrent case R^1 R^1 Transient case

Escape along an axis

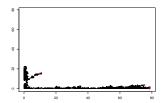
Transient case, two ways of escape to infinity :

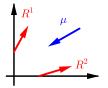
- ▶ The two coordinates tend to infinity $\Leftrightarrow \mu_1 > 0$ et $\mu_2 > 0$
- ▶ Along one of the axes $\Leftrightarrow \mu_1 < 0$ ou $\mu_2 < 0$
- $p_1(z_0)$ escape probability along the horizontal axis
- $p_2(z_0)$ escape probability along the vertical axis
- \hookrightarrow Most of the time $p_1(z_0) = 0$ or 1

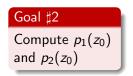
Escape probability (2020+, FOMICHOV, F., IVANOVS)

Assume that $\mu < 0$, $r_1, r_2 > 0$, $r_1r_2 - 1 > 0$, $\mu_1 - r_2\mu_2 > 0$, $\mu_2 - r_1\mu_1 > 0$

 $p_1(z_0) + p_2(z_0) = 1$ et $p_1(z_0)$ et $p_2(z_0) \in (0,1)$







Green's functions

Transient case

Green's functions

$$g^{z_0}(z)dz = \mathbb{E}_{z_0} \int_0^\infty \mathbb{1}_{dz}(Z_u)du$$

$$= \int_0^\infty p_t(z_0, dz)dt$$
Green's functions ont the boundary

$$h_i^{z_0}(z)$$

$$h_i^{z_0}(z)dz = \mathbb{E}_{z_0} \int_0^\infty \mathbb{1}_{dz}(Z_u)dL_u^i$$

Quantity of time spend in a set

Goal ‡3 Study g and h_i

Operators associated to Green's functions

 $Gf(z_0) = \mathbb{E}_{z_0} \int_0^\infty f(Z_t) dt = \int_{\mathbb{R}^2_+} f(z) g^{z_0}(z) dz \qquad \qquad H_i \phi_i(z_0) = \mathbb{E}_{z_0} \int_0^\infty \phi_i(Z_t) dL_t^i = \int_{\mathbb{R}^2_+} \phi_i(z) h_i^{z_0}(z) dz$

PDE : Green's functions

Green's functions are fundamental solutions of PDE with **oblique Neumann conditions** in the quadrant :

$$\begin{cases} \mathcal{L}u = -f & \text{in the quadrant où } \mathcal{L}f = \frac{1}{2}\nabla \cdot \Sigma\nabla + \mu \cdot \nabla \\ \partial_{R_i}u = \phi_i & \text{on the boundary where } \partial_{R_i} = R^i \cdot \nabla \\ \text{Solution :} & u = Gf + H_1\phi_1 + H_2\phi_2 \end{cases}$$

Absorption probability
$$p_A$$
Escape probability p_1 (abscissa) $\begin{cases} \mathcal{L}p_A = 0 \\ \partial_{R_i}p_A = 0 \end{cases}$ et $\begin{cases} p_A(0) = 1 \\ \lim_{\infty} p_A = 0 \end{cases}$ $\begin{cases} \mathcal{L}p_1 = 0 \\ \partial_{R_i}p_1 = 0 \end{cases}$ et $\begin{cases} \lim_{\omega} p_1(u, 0) = 1 \\ \lim_{\omega} p_1(0, v) = 0 \end{cases}$

Obliquely reflected Brownian motion in the quadrant

- Absorption at the apex
- Escape along an axis
- Green's functions

2 Analytic approach

- Functional equation
- Boundary value problem
- Explicit expression

3 Martin and Poisson boundary

- Asymptotics
- Saddle point method and transfer lemma
- Martin and Poisson boundary, harmonic functions

Analytic approach

- Find a functional equation
- Study the kernel (Riemann surface, group)
- Continue analytically generating functions
- Establish a boundary value problem
- Solve it to *determine an explicit formula* (Sokhotski–Plemelj, invariants)
- *Find the asymptotics* (singularities, transfer lemmas, saddle point method)

Laplace transforms

▶ Discret case : generating functions of Green's functions $g_{i,j}^{i_0,j_0}$ on \mathbb{Z}^2_+ is the generating series $\sum_{\mathbb{Z}^2_+} g_{i,j}^{i_0,j_0} x^i y^j$.

- **Continuous case :**
 - Laplace transform of the Green's function

$$L(x,y) = \iint_{\mathbb{R}^2_+} e^{xu+yv} g^{z_0}(u,v) \mathrm{d} u \mathrm{d} v$$

• On the *boundaries* we define

$$\boldsymbol{L}_{2}(\boldsymbol{x}) = \int_{\mathbb{R}_{+}} e^{\boldsymbol{x}\boldsymbol{u}} h_{2}^{\boldsymbol{z}_{0}}(\boldsymbol{u}) \mathrm{d}\boldsymbol{u}, \quad \boldsymbol{L}_{1}(\boldsymbol{y}) = \int_{\mathbb{R}_{+}} e^{\boldsymbol{y}\boldsymbol{v}} h_{1}^{\boldsymbol{z}_{0}}(\boldsymbol{v}) \mathrm{d}\boldsymbol{v}$$

▶ Similarly, we define the Laplace transform :

- \widetilde{L} , \widetilde{L}_1 , \widetilde{L}_2 of the absorption probability p_A ,
- \hat{L} , \hat{L}_1 , \hat{L}_2 of the **escape probability** along the abscissa p_1 .

Functional equation

This equation binds together the Laplace transform of Green's functions.

Functional equation (2020, F.)

$$-K(x,y)L(x,y) = K_1(x,y)L_1(y) + K_2(x,y)L_2(x) + e^{(x,y)\cdot z_0}$$

where

$$\begin{cases} \mathcal{K}(x,y) = \frac{1}{2}(\sigma_{11}x^2 + \sigma_{22}y^2 + 2\sigma_{12}xy) + \mu_1 x + \mu_2 y, \\ \mathcal{K}_1(x,y) = x + r_1 y, \\ \mathcal{K}_2(x,y) = r_2 x + y. \end{cases}$$

Connect what happens in the quadrant and on the boundaries.

- ▶ The function *K* is called the kernel.
- ▶ The term $e^{(x,y)\cdot z_0}$ contains the dependence to the starting z_0 .

Proof : Itô formula, PDE.

Functional equations

Green's functions (2020, F.)

 $-K(x,y)L(x,y) = K_1(x,y)L_1(y) + K_2(x,y)L_2(x) + e^{(x,y)\cdot z_0}$

Absorption probability (2021, ERNST, F.)

$$-\mathbf{K}(x,y)\widetilde{\mathbf{L}}(x,y) = \widetilde{\mathbf{K}}_1(x,y)\widetilde{\mathbf{L}}_1(y) + \widetilde{\mathbf{K}}_2(x,y)\widetilde{\mathbf{L}}_2(x)$$

Escape probability (2020+, FOMICHOV, F., IVANOVS)

$$-\mathcal{K}(x,y)\widehat{\mathcal{L}}(x,y) = \widetilde{\mathcal{K}}_1(x,y)\widehat{\mathcal{L}}_1(y) + \widetilde{\mathcal{K}}_2(x,y)\widehat{\mathcal{L}}_2(x) + cp_1(0)$$

$$\begin{aligned} \mathcal{K}(x,y) &= \frac{1}{2} (\sigma_{11} x^2 + \sigma_{22} y^2 + 2\sigma_{12} xy) + \mu_1 x + \mu_2 y, \\ \mathcal{K}_1(x,y) &= x + r_1 y, \quad \mathcal{K}_2(x,y) = r_2 x + y, \\ \widetilde{\mathcal{K}}_1(x,y) &= \frac{r_2 x + y}{2} + \sigma_{12} x + \mu_2, \quad \widetilde{\mathcal{K}}_2(x,y) = \frac{r_1 y + x}{2} + \sigma_{12} y + \mu_1. \end{aligned}$$

Proof : Itô/Dynkin formula, IPP and PDE.

What is a boundary value problem?

A boundary value problem is made of two conditions :

- a regularity condition on a set
- a boundary condition

What is a boundary value problem?

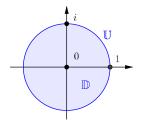
A boundary value problem is made of two conditions :

- a regularity condition on a set
- a boundary condition

Example :

 I is meromorphic on the unit disc D has one single poleor order one in 0

3
$$I(\bar{x}) = I(x)$$
 for $x \in \mathbb{U}$
unit circle



What is a boundary value problem?

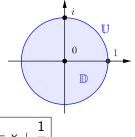
A boundary value problem is made of two conditions :

- a regularity condition on a set
- a boundary condition

Example :

 I is meromorphic on the unit disc D has one single poleor order one in 0

3
$$I(\bar{x}) = I(x)$$
 for $x \in \mathbb{U}$
unit circle



The solution (up to constants) is $I(x) = x + \frac{1}{x}$.

I is a **conformal gluing function** which unite the upper and the lower part of \mathbb{U} .

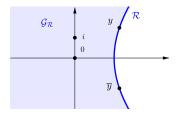
I is an **invariant for the conjugation** on the boundary \mathbb{U} .

Boundary value problem (2020, F.)

- L_1 is analytic on $\mathcal{G}_{\mathcal{R}}$ and tends to 0 at infinity;
- **2** L_1 satisfy the boundary condition

$$L_1(\overline{y}) = G(y)L_1(y) + g(y), \quad \forall y \in \mathcal{R}.$$

- *G* and *g* depend of parameters
- \Re is an **hyperbola** defined by the kernel



Boundary value problems

Green's functions (2020, F.)

$$L_1(\overline{y}) = G(y)L_1(y) + g(y), \qquad \forall y \in \mathfrak{R}.$$

Absorption probability (2021, ERNST, F.)

$$\widetilde{L}_1(\overline{y}) = \widetilde{G}(y)\widetilde{L}_1(y), \quad \forall y \in \mathcal{R}.$$

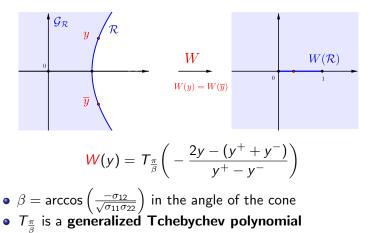
Escape probability (2020, FOMICHOV, F., IVANOVS)

$$\widehat{L}_1(\overline{y}) = \widehat{G}(y)\widehat{L}_1(y) + \widehat{g}(y), \qquad \forall y \in \mathfrak{R}.$$

Preuve : Cancel the kernel in the functional equation.

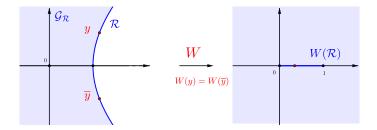
Conformal gluing function

• Conformal gluing function W unite the upper and the lower part of the hyperbola $\mathcal R$



$$T_{\frac{\pi}{\beta}}(x) = \cos(\frac{\pi}{\beta}\arccos(x)) = \frac{1}{2}\left\{ \left(x + \sqrt{x^2 - 1}\right)^{\frac{\pi}{\beta}} + \left(x - \sqrt{x^2 - 1}\right)^{\frac{\pi}{\beta}} \right\}_{\frac{29}{44}}$$

From Carleman to Riemann



Carleman boundary value problem \longrightarrow Riemann boundary value problem

$$ightarrow \widetilde{L}_1(\overline{y}) = \widetilde{G}(y)\widetilde{L}_1(y), \forall y \in \mathbb{R}$$

•
$$M:=\widetilde{L}_1\circ W^{-1}$$
 and

•
$$H := \widetilde{G} \circ W^{-1}$$

$$\blacktriangleright M^+(t) = H^-(t)M^-(t), \forall t \in [0,1]$$

Sokhotski-Plemelj formulae

We define for $z \in \mathbb{C} \setminus \mathcal{L}$ $F(z) := \frac{1}{2i\pi} \int_{\mathcal{L}} \frac{f(t)}{t-z} dt$ C $F^{+} \qquad b$ F^{-}

- F is sectionaly analytic on $\mathbb{C} \setminus \mathcal{L}$
- F^+ and F^- are limits of F on both parts of \mathcal{L}

Sokhotski-Plemelj formula

$$F^+(t) - F^-(t) = f(t)$$

$$M = e^F$$
 and $f = \ln H \Rightarrow M^+ = H^- M^-$

Solution of the Riemann boundary value problem

▶ If $M^+ = H^-M^-$ then

$$M = \exp \frac{1}{2i\pi} \int_{\mathcal{L}} \frac{\ln H(t)}{t-z} \, \mathrm{d}t$$

Explicit expression

Absorption probability (2021, ERNST, F.)

$$\widetilde{L}_{1}(y) = \frac{W'(0)}{W(y) - W(0)} \left(\frac{W(0) - W(p)}{W(y) - W(p)}\right)^{-\chi} \exp\left\{\frac{1}{2i\pi} \int_{\mathcal{R}^{-}} \log G(t) \frac{W'(t)}{W(t) - W(y)} \mathrm{d}t\right\}$$

► Inversion of the Laplace transform \widetilde{L}_1 \hookrightarrow absorption probability $p_A(z_0)$

Escape probability and Green's functions

- Boundary value problems satisfied by *L*₁ and *L*₁ are **non homogeneous**
 - \hookrightarrow More complicated formulas

Remarkable cases

Escape probability along abscissa

(2020+, Fomichov, F., Ivanovs)

Starting from the origin and with identity covariance :

$$p_1(0) = \frac{r_1(r_2\mu_2 - \mu_1)(\mu_2 + r_2\mu_1)}{\mu_1\mu_2(r_1r_2 - 1)(r_1 + r_2)}.$$

Dual skew symmetry (2021, ERNST, F.)

Following statements are equivalent :

- Exponential absorption probability, i.e. $\exists v \in \mathbb{R}^2$ such that $p_A(z_0) = e^{z_0 \cdot v}$
- Preflection vectors are opposite,

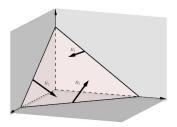
i.e.
$$r_{11}r_{22} - r_{21}r_{12} = 0$$

Remarkable cases

Dual skew symmetry in an orthant (2022, F., RASCHEL)

Following statements are equivalent :

- Absorption probability of product form i.e. there exist f_1, \dots, f_n such that $f(z) = f_1(z_1) \cdots f_n(z_n)$
- Reflection vectors are coplanar
 i.e. det R = 0



Plan

Obliquely reflected Brownian motion in the quadrant

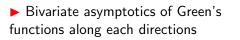
- Absorption at the apex
- Escape along an axis
- Green's functions

2 Analytic approach

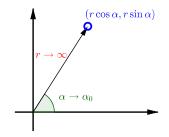
- Functional equation
- Boundary value problem
- Explicit expression

3 Martin and Poisson boundary

- Asymptotics
- Saddle point method and transfer lemma
- Martin and Poisson boundary, harmonic functions



```
g^{z_0}(r\cos\alpha, r\sin\alpha) \underset{\alpha \to \alpha_0}{\sim} ?
```



Method :

- Transfer lemma (study of singularities)
- Saddle point method (inversion of Laplace transform)

Transfer lemmas and sadlle point method

Transfer lemma

- L_1 Laplace transform of h_1
- a the smallest singularity and has order *k*

$$L_1(z) \sim \frac{c}{(a-z)^k}$$

► Then,

$$h_1(x) \underset{x \to \infty}{\sim} \frac{c}{\Gamma(k)} x^{k-1} e^{-ax}$$

Saddle point method

- f and g holomorphic
- *a* critic point
 f'(*a*) = 0 et *f*"(*a*) ≠ 0

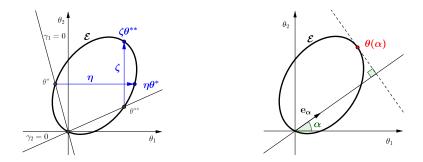
$$\blacktriangleright$$
 Then, for a contour ${\cal C}$

 $\int_{\mathcal{C}} g(z) e^{x f(z)} \mathrm{d} z \underset{x \to \infty}{\sim}$

 $g(a)\sqrt{\frac{2\pi}{-f''(a)}}x^{-\frac{1}{2}}e^{-ax}$

Poles and saddle point

 $\mathcal{E} := \{(x, y) \in \mathbb{R}^2 : K(x, y) = 0\}$ ellipse



Poles $\eta \theta^*$ et $\zeta \theta^{**}$

Saddle point $\theta(\alpha)$

Analytic combinatorics to several variables

Asymptotis of Green's functions (2021, ERNST, F.)

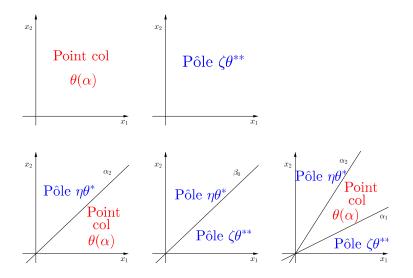
Let $\alpha_0 \in (0, \pi/2)$. We have

$$g^{z_0}(r\coslpha, r\sinlpha) \underset{\alpha o lpha_0}{\sim} Cr^{\kappa} e^{-r(\coslpha, \sinlpha) \cdot \tau(lpha)}$$

where :

- Critical exponent κ equal to $-3/2,\,-1/2,\,0$ or 1.
- The decay rate τ(α) ∈ ℝ² comes from poles or from the saddle point. That is : ηθ*, ζθ** or θ(α).

Asymptotics according to the direction : several cases



Heuristic of Martin and Poisson boundary

X₁ = Brownien absorbé $\int \Delta v = O Harmonique$ D = Domaine borné - 30=8 Dirichlet oc = point de départ $<math>= = inf \{t : X_t \in \partial D\}$ $\cup(\infty) = \mathbb{E}\left[f(X_{e}) \right]$ SD X_{c} - [818) 200, 100 y P (X26 dy)

Heuristic of Martin and Poisson boundary

X, = Brownien absorbé en 2D, régléchi en 2D2 ∆ U = O Harmonique JUJ = 8 Dirichlet JUJ = 0 Neumann D = Domaine borné DC = point de départ $<math>T = inf\{t : X_t \in \partial D_i\}$ $\cup(\infty) = \mathbb{E}\left\{\left\{\left(X_{-}\right)\right\}\right\}$ 90 $\int \xi(x) \partial g(y) dy$ $P(x_2 \in dy)$

Heuristic of Martin and Poisson boundary

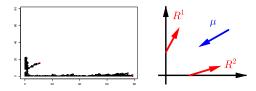
Es U = O Harmonique X1 = transient Quadrant non borné AM = 8 Dirichlet M = compactification de Murtin (Ju axes = O Neumann $\cup(\infty) = \mathbb{E}\left[\left\{\frac{1}{2}\right\}\right]$ grontière de Martin MG (_∞ ∈ dy)

Harmonic functions : probabilistic interpretations

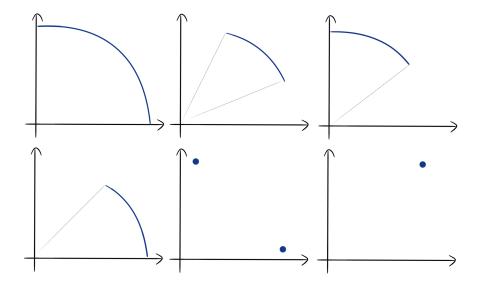
► Trivial Martin boundary (**one point**) ⇔ constants are the only harmonic functions

Transient reflected Brownian motion in the quadrant

▶ **Two points** Martin boundary \Leftrightarrow Escape probability p_1 and p_2 are the **only** harmonic functions $(p_1 + p_2 = 1)$



Martin boundary in the quadrant



Thank you for your attention !

- BACCELLI, F., FAYOLLE, G. "Analysis of models reducible to a class of diffusion processes in the positive quarter plane", *SIAM J. Appl. Math.*, **47(6)** :1367–1385 (1987).
- P. ERNST AND S. FRANCESCHI "Martin boundary and asymptotic behavior of the occupancy density for obliquely RBM in a half-plane", *Annals of Applied Probability*, ArXiv :2004.06968 (2021).
- P. ERNST AND S. FRANCESCHI "Escape and absorption probability for obliquely reflected Brownian motion in a quadrant", Stochastic Processes and their Applications, ArXiv :2101.01246 (2021).
 - G. FAYOLLE, R. IASNOGORODSKI AND V. MALYSHEV Random walks in the quarter-plane, Application of Mathematics (New York), vol. 40, Springer, (1999).
 - V. FOMICHOV, S. FRANCESCHI AND J. IVANOVS "Probability of total domination for transient reflecting processes in a quadrant", submitted to Advances in Applied Probability, ArXiv : (2020).
 - S. FRANCESCHI "Green functions with oblique Neumann boundary conditions in a wedge", *Journal of Theoretical Probability*, ArXiv :1905.04049 (2019).

- HARRISON, J. M. AND REIMAN, M. I. "Reflected Brownian motion on an orthant", Annals of Probability, **9(2)** :302–308 (1981).
- HOBSON, D. G. AND ROGERS, L. C. G. "Recurrence and transience of reflecting Brownian motion in the quadrant.", *Mathematical Proceedings of the Cambridge Philosophical Society*, **113(2)** :387–399 (1993).
- I. KOURKOVA AND V. MALYSHEV "Martin boundary and elliptic curves", *Markov Process and Related Fields*, **4** p. 203-272 (1998).
- K. RASCHEL "Green functions for killed random walks in the Weyl chamber of Sp(4)", Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 47 (4) :1001-1019 (2011).

VARADHAN, S. R. AND WILLIAMS, R. J. - "Brownian motion in a wedge with oblique reflection", *Communications on Pure and Applied Mathematics*, **38(4)** :405–443 (1985).