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Abstract

We consider two-dimensional Lévy processes reflected to stay in the positive quadrant.
Our focus is on the non-standard regime when the mean of the free process is nega-
tive but the reflection vectors point away from the origin, so that the reflected process
escapes to infinity along one of the axes. Under rather general conditions, it is shown
that such behaviour is certain and each component can dominate the other with positive
probability for any given starting position. Additionally, we establish the correspond-
ing invariance principle providing justification for the use of the reflected Brownian
motion as an approximate model. Focusing on the probability that the first component
dominates, we derive a kernel equation for the respective Laplace transform in the start-
ing position. This is done for the compound Poisson model with negative exponential
jumps and, by means of approximation, for the Brownian model. Both equations are
solved via boundary value problem analysis, which also yields the domination probabil-
ity when starting at the origin. Finally, certain asymptotic analysis and numerical results
are presented.
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1. Introduction

Reflected processes occupy a prominent role in the literature on operations research and
applied probability. In the one-dimensional setting, reflection is specified in terms of the clas-
sical Skorokhod problem, and it is widely used to model workload in queues, as well as capital
injections and dividends in risk insurance, to name just a few applications. Multidimensional
models, allowing for various new features, have been extensively studied as well. We mention
only the classical monographs [7] and [11], as well as the survey paper [27] on the semi-
martingale reflected Brownian motion. Apart from some studies of the fundamental properties
of the multidimensional model [21, 24], most of the work focuses on the recurrent case and
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2 V. FOMICHOV ET AL.

FIGURE 1. Reflected Brownian motion started at the origin: domination of the first component.

the stationary distribution of the reflected process; see [8, 14] for some recent work. Potential
theory and Green functions have also been considered [4, 19]. Another quantity of interest is
the probability of hitting the origin for a transient process, which in the insurance context can
be interpreted as ruin in a model of two collaborating companies [1, 16]; see also [15, 25] for
some fundamentals concerning the Brownian model.

In this paper we consider a bivariate Lévy process with a negative mean in a non-standard
regime, where the reflection vectors point away from the origin, forcing the reflected process to
escape to infinity along one of the axes. We say that the first component totally dominates the
second if the process escapes to infinity along the x-axis, that is, the first component grows to
infinity while the second becomes relatively negligible; see Figure 1 for an illustration. Under
rather general conditions, it is shown in Theorem 3.1 that one of the components dominates
the other almost surely and that each component can be dominant with positive probability for
any fixed initial position. Additionally, we establish an invariance principle in Theorem 4.1
justifying, for example, the use of the Brownian approximation in applications.

Some of the possible interpretations of our model include the following:

• Two funds diminishing on average, with an agreement that deficit in one fund is instan-
taneously covered together with a proportional capital inflow in the other. This inflow
may also result indirectly from the loss of rating or trust.

• Two coupled servers with a special feature that one server, upon becoming idle, hinders
the other (or provides some extra work for the other).

We think mainly of the first interpretation and sometimes use the corresponding terminol-
ogy, such as capital and injections.

It must be noted that the conditions imposed on the reflection angles lead to a non-unique
solution of the Skorokhod problem in general, which makes the definition of the model prob-
lematic. We resolve this by restricting our attention to certain subclasses of bivariate Lévy
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Probability of total domination 3

processes. Firstly, the model in the Brownian case is defined by [24], where the authors
also showed its uniqueness in law and derived some important properties. Secondly, a sim-
ple iterative construction can be applied if one of the components of the free process does
not become negative immediately. In particular, this allows for a compound Poisson process,
where each component has a positive linear drift and only negative jumps (cf. the classical
Cramér–Lundberg model in risk insurance). We stress that non-uniqueness and the particular
implementation of reflection at the origin has no or little effect on our results. Furthermore, we
formulate the domination and approximation results in such a way that other models can easily
be added upon verification of some basic properties.

Additionally, we identify the Laplace transform of the probability that the first entity wins
by totally dominating the second in two important special cases:

(i) the aforementioned compound Poisson model with independent components and nega-
tive exponential jumps;

(ii) the correlated Brownian model.

Firstly, we derive a so-called kernel equation in Case (i), additionally allowing for common
jumps (shocks), and then obtain a kernel equation in Case (ii) via approximation, relying on
the theory developed below. While in Case (ii) the kernel has already been studied in [14] for
different equations/problems, in Case (i) we have a completely new analytic problem. Even
though our kernel equations resemble the one in [16], the Wiener–Hopf methods used there
seem not to be applicable in the current setting.

The kernel equations are solved by reducing them to the Carleman boundary value problem
(BVP) following the general scheme presented in the classical monograph [11]. This method,
initially proposed in the seventies [10, 22], has been used to study random walks in the quad-
rant, their invariant measures and Green functions [18, 19], and some related queueing models
[2]. This approach has also been fruitful in the continuous setting for computing the stationary
distribution of a reflected Brownian motion in the quadrant [14]. Our solutions are given in
terms of a single contour integral along a half-circle in Case (i) (see Theorem 6.1) and along
a half-hyperbola in Case (ii) (see Theorem 7.1). Furthermore, we obtain the probability of
domination when starting at the origin and also derive some asymptotic results.

The paper is organized as follows. The model is defined in Section 2, and a basic result
concerning the total domination probabilities is proven in Section 3. The approximation result
and its proof, relying on the uniform law of large numbers for Lévy processes, are given in
Section 4. The kernel equations for the models (i) and (ii) are derived in Section 5 from the
one for the Poissonian model with common shocks. With regard to the latter equation, we only
summarize the basic steps; the corresponding lengthy and tedious calculations are presented in
Appendix A. We solve the kernel equation for the Poissonian model (i) in Section 6 and for the
Brownian model (ii) in Section 7. Finally, numerical illustrations are provided in Section 8.

2. Definition of the model

Consider a probability space with filtration Ft, and let X(t) = (X1(t), X2(t)), t � 0, be an
adapted bivariate Lévy process, that is, a process with stationary and independent increments
which is continuous in probability; without loss of generality, we assume that it has càdlàg
paths without fixed jumps (e.g., see [17, Theorem 15.1]). Our main examples will be a corre-
lated Brownian motion and a drifted compound Poisson process, whose two components may
exhibit both individual and common jumps.
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2.1. Skorokhod problem

A bivariate process Y � 0 is a solution to the Skorokhod problem [27], also known as the
dynamic complementarity problem, if the following holds almost surely (a.s.):

Y1(t) = u + X1(t) + L1(t) + r2L2(t),

Y2(t) = v + X2(t) + r1L1(t) + L2(t),
(2.1)

where (u,v) is the starting position with u, v � 0, and the Li are the regulators (cumulative
capital injections) satisfying

(i) Li(t) is non-decreasing with Li(0) = 0;

(ii) Li(t) increases only when Yi(t) = 0, i.e.,
∫∞

0 Yi(s)dLi(s) = 0.

It is assumed that all the processes are adapted to the given filtration. The second condi-
tion concerns minimality of injections, meaning that no injections are received unless strictly
necessary; in particular, we have

L1(t) = sup
0�s�t

[−u − X1(s) − r2L2(s)] ∨ 0,

L2(t) = sup
0�s�t

[−v − X2(s) − r1L1(s)] ∨ 0.

In contrast to the classical setting, we assume that

r1, r2 > 0 and r1r2 > 1. (2.2)

The corresponding reflection matrix
(

1 r2
r1 1

)
belongs to the so-called completely-S class and

thus our Skorokhod problem has a solution in the sample-path sense [20]. Uniqueness, how-
ever, is not guaranteed, leading to certain measurability issues for general processes; see
[5, 27]. Nevertheless, in the Brownian case there is a unique weak solution [24]. Moreover,
[28] establishes an invariance property allowing one to retrieve the Brownian model as a weak
limit of approximations on compact time intervals.

2.2. Iterative definition and linear complementarity problem

To define the reflected process for a more general X, we need to recall an important
dichotomy for one-dimensional Lévy processes: the probability of immediate entrance into
the negative half-line (−∞, 0) is either 0 or 1. In the first case the entrance time is strictly
positive and the main example is a process of bounded variation on compacts with a positive
linear drift [6, Proposition VI.11].

Coming back to the bivariate process X, we assume that at least one of its components enters
(−∞, 0) at a strictly positive time. Without loss of generality, we assume that X2 is such, and
let Tk, k � 1, be the random times when X2 (or, equivalently, v + X2) updates its infimum; for
convenience, we also set T0 = 0. It is clear that if

v + X2(Tk−1) + r1L1(Tk−1) + L2(Tk−1) � 0,

then, since r1 > 0, we also have

v + X2(t) + r1L1(t) + L2(Tk−1) � 0, Tk−1 � t< Tk;
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besides, Tk → ∞ a.s. as k → ∞. Therefore, in order to obtain the reflected process Y on
[0,+∞), we just need to define it on the intervals [Tk−1, Tk), k � 1, keeping L2 constant on
them.

To this end, we set L2(t) = 0 for t< T1, and then define Y on [0, T1) by reflecting u + X1 +
r2L2 in the one-dimensional sense up to T1, i.e. taking

L1(t) = − inf
0�s�t

[0 ∧ (u + X1(s))], t< T1.

Then, loosely speaking, at the moment T1 we solve the corresponding linear complementarity
problem, reset Y accordingly, and proceed from there, repeating the procedure. More precisely,
at each epoch Tk, which is a stopping time, we let

xi = Yi(Tk − ) +�Xi(Tk), i = 1, 2,

where �Xi(Tk) = Xi(Tk) − Xi(Tk − ), and solve the linear complementarity problem for this
x = (x1, x2) ∈R

2:
y1 = x1 + �1 + r2�2, y2 = x2 + �2 + r1�1, (2.3)

where yi, �i � 0 and �iyi = 0. Then we set Yi(Tk) = yi, Li(Tk) = Li(Tk − ) + �i, and proceed as
if Y(Tk) = (y1, y2) were the starting position instead of (u,v) and X(Tk + ·) − X(Tk) were the
free process instead of X, whereas we let L accumulate the needed future injections.

Thus defined, the processes Y , L1, and L2 are clearly adapted to the given filtration and
satisfy (2.1) together with (i) and (ii). In addition, if both X1 and X2 enter (−∞, 0) at a strictly
positive time, then L1 and L2 are piecewise constant and do not depend on the initial choice of
the component of X for which the Tk are constructed.

However, it turns out that the static problem (2.3) can have multiple solutions for certain
(x1, x2)< 0. In principle, any of these can be used, and one may even pick a solution in an
FTk -measurable random way. However, we choose one specific solution, which we are now
going to describe.

In the static problem (2.3), xi � 0 necessarily implies that �i = 0. In particular, x1, x2 � 0
yields yi = xi (no adjustment). Furthermore, if x1 < r2x2 ∧ 0, then y1 = 0 and y2 = x2 − r1x1,
whereas if x2 < r1x1 ∧ 0, then y1 = x1 − r2x2 and y2 = 0. The final case concerns the wedge:

x1, x2 < 0, x1 � r2x2, x2 � r1x1;

see also Figure 2. Here we have three solutions (two on the boundary):

(i) y1 = y2 = 0,

(ii) y1 = x1 − r2x2, y2 = 0,

(iii) y1 = 0, y2 = x2 − r1x1.

In the following we pick (i) for concreteness, which resets both components to 0 when ambi-
guity arises. It is noted that this particular choice has no or little effect on our results, which
we also stress in the following.

Finally, it is worth mentioning that in a similar way one can construct the reflected process
for the sum of a Brownian motion and an arbitrary independent compound Poisson process,
where between the jumps the model evolves as a reflected Brownian motion and at jump epochs
we again solve (2.3).
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FIGURE 2. Solutions to the linear complementarity problem (2.3). The blue half-line corresponds to
x1 = r2x2 < 0 and the red to x2 = r1x1 < 0. The red region results in y1 = 0 and the blue region in y2 = 0.
The wedge corresponds to three solutions, and for concreteness we choose y1 = y2 = 0 there.

2.3. Basic properties

Here we observe some basic properties of the reflected process. Firstly, note that the
regulator does not increase when the free process is non-negative:

∀ t ∈ [0, T] : u + X1(t) � 0 =⇒ L1(T) = 0, (2.4)

since from (2.1) we then have Y1(t) � L1(t) and thus
∫ T

0 L1(t)dL1(t) = 0. In such a case L2(t) =
(− inf0�s�t [v + X2(s)])+ and the expressions for Y1 and Y2 are straightforward. Unlike in the
classical case, however, non-uniqueness presents some problems: if L1(T) = 0 yields a non-
negative solution (and even Y1 may be strictly positive on [0,T]), then we cannot conclude that
this is the right solution.

Importantly,

Y is strong Markov, (2.5)

so that for any finite stopping time τ , conditional on Y(τ ) = (u′, v′), the process Y ′(t) = Y(τ +
t) is independent of Fτ and has the original law when started at (u′, v′). In the Brownian
case this is a consequence of the strong Feller property shown in [24], and in the case of the
iterative construction of Section 2.2 this property is obviously inherited from the process X.
Note, however, that the choice in (2.3) must not depend on the future evolution of the process.

Finally we comment on rescaling of the model. For any a1, a2 > 0, by setting

X′
i(t) = aiXi(t), u′ = a1u, v′ = a2v, r′

1 = a2

a1
r1, r′

2 = a1

a2
r2, (2.6)

we find that Y ′
i (t) = aiYi(t), with L′

i(t) = aiLi(t) being a solution of (2.1). Furthermore, we
resolve non-uniqueness in Section 2.2 in a consistent way, implying Y ′

i (t) = aiYi(t). Thus, the
probability of total domination defined in Section 3 is invariant under any such scaling given
that the initial position is scaled appropriately.
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FIGURE 3. Reflection vectors and the mean.

3. Domination

3.1. The result

We assume throughout this paper that X is a bivariate Lévy process (with càdlàg paths) such
that

EX(1) =μ= (μ1, μ2)< 0, (A1)

r1|μ1|> |μ2|, r2|μ2|> |μ1|, (A2)

where the latter implies (2.2). Furthermore, we assume that the reflected process Y is well-
defined in the sense that it satisfies (2.1) and (2.5). It is noted that in the Brownian case the
above conditions imply that Y is transient [15], but more is true, as we show in the following.

An additional technical assumption is needed to exclude certain degenerate cases:

P
{∃ t> 0 : Xi(t)> 0, Xj(t) = Xj(t)

}
> 0, (i, j) = (1, 2), (2, 1), (A3)

where Xj(t) := inf0�s�t Xj(s). This condition is not minimal possible, but we avoid further
technicalities since it is broadly satisfied. Importantly, for the Brownian model it is sufficient
to assume that its correlation ρ is not 1. For the compound Poisson model with positive linear
drift c it is sufficient to assume that both components may exhibit individual negative jumps.
As an example not satisfying (A3), consider jumps distributed as (�1, �2), where �i < 0 and
P(�1/�2 � c1/c2) is either 1 or 0. It should be mentioned that such models with ordered jumps
have been used, for example, in [3], because they allow for simpler analysis in various settings.

Our focus is on the probabilities pi = pi(u, v) of total domination starting from (u,v), which
are defined by

p1(u, v) = P(u,v)

{
Y1(t) → ∞,

Y2(t)

Y1(t)
→ 0

}
,

p2(u, v) = P(u,v)

{
Y2(t) → ∞,

Y1(t)

Y2(t)
→ 0

}
.

The following result shows that total domination is certain, and each component can be the
dominant one for any starting position.
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Theorem 3.1 (Total domination probabilities). Under the conditions (A1), (A2), and (A3) for
any (u, v) ∈R

2+ we have the following:

p1(u, v) ∈ (0, 1) and p1(u, v) + p2(u, v) = 1.

Moreover, lim
u→∞ p1(u, v) = 1 and lim

v→∞ p1(u, v) = 0.

The proof of this result is based on two lemmas and the observation that Y visits the bound-
ary infinitely often. Firstly, we employ a regeneration argument to show that Y hits the remote
parts of the quadrant boundary a.s. Secondly, when starting in those remote parts, the process
Y has the claimed behaviour with high probability, which follows from the strong law of large
numbers and some basic properties underlying (2.1).

3.2. Proofs

By the law of large numbers, we have

Xi(t)

t
a.s.−→μi, t → ∞, i = 1, 2; (3.1)

see, e.g., [23, Theorem 36.5]. This implies that if the conditions (A1) and (A2) are satisfied,
then the reflected stochastic process Y hits the boundary ∂R2+ infinitely often:

sup{t � 0 : Y1(t) ∧ Y2(t) = 0} = ∞ a.s.

Indeed, suppose that τ = sup{t � 0 : Y1(t) = 0}<∞. By definition, we have Y1(t)> 0, t> τ ,
and so L1(t) = L1(t ∧ τ ), t � 0. Therefore, using (3.1), we obtain

lim
t→∞

L2(t)

t
= lim

t→∞
1

t
sup

0�s�t
(−v − X2(s) − r1L1(s ∧ τ ))+ = −μ2 > 0 a.s.,

which implies that sup{t � 0 : Y2(t) = 0} = ∞.
However, if the condition (A3) is also fulfilled, then a stronger assertion holds true; namely,

the reflected process hits the remote parts of the boundary ∂R2+ a.s.

Lemma 3.1. Assume the conditions (A1), (A2), and (A3), and for any h> 0 define two disjoint
sets

D1
h = {(x, 0) : x � h}, D2

h = {(0, y) : y � h}.

Then, for any fixed (u, v) ∈R
2+ and all h> 0, the stochastic process Y satisfies the following:

P(u,v)

{
∃ t � 0 : Y(t) ∈ D1

h ∪ D2
h

}
= 1,

P(u,v)

{
∃ t � 0 : Y(t) ∈ Di

h

}
> 0, i = 1, 2.

Proof. Note that the law of large numbers (3.1) and the condition (A3) imply that the paths
of X1 and X2 take both positive and negative values, and so are not monotone functions with
probability one. In addition, by the condition (A3) we have

P
{∃ t> 0 : X1(t)> 0, X2(t) = X2(t)

}
> 0.
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Furthermore, since μ2 < 0, we can add X2(t)< 0 into this probability to get

P
{∃ t> 0 : X1(t)> 0, X2(t) = X2(t)< 0

}
> 0. (3.2)

Fixing any δ > 0, we note that since X1 is not non-increasing it can become arbitrarily large
before becoming �−δ. Thus, using the strong Markov property and applying (3.2) sufficiently
many times, we obtain

P
{∃ t> 0 : X1(t)> 1, X1(t)>−δ, X2(t) = X2(t)< 0

}
> 0,

and hence for some T > 0

c = P
{∃ t ∈ (0, T] : X1(t)> 1, X1(t)>−δ, X2(t) = X2(t)< 0

}
> 0. (3.3)

As was shown at the beginning of this subsection, the stochastic process Y visits the bound-
ary of R2+ infinitely often. Assume that for some δ > 0 the process Y visits D1

δ ∪ D2
δ infinitely

often. Let us show, using a regeneration argument, that the same is then true for δ′ = δ + 1.
Consider an increasing sequence of stopping times τ1, τ2, . . . defined as the successive visits
of the set D1

δ with at least T time units in between:

τ1 = inf
{
t � 0 | Y(t) ∈ D1

δ

}
,

τi+1 = inf
{
t � τi + T | Y(t) ∈ D1

δ

}
, i � 1.

For each i such that τi <∞, let ui = Y1(τi), and consider the probability that Y hits D1
ui+1 in

[τi, τi + T], but before Y1 becomes less than or equal to ui − δ, which will mean that it hits
D1
δ+1. This probability is constant for all i and is given by (3.3). Hence, the probability of not

visiting D1
δ+1 is bounded above by (1 − c)N1 , where N1 is the number of τi <∞. The same

is true for the other direction. Since at least one of N1,N2 is infinite, this implies that visiting
D1
δ+1 ∪ D2

δ+1 is certain.
Also, we note that if only the origin is visited infinitely often, then we may apply a simi-

lar regeneration argument at the origin to get a contradiction. Therefore, the above argument
proves the first claim.

To prove the second statement, we note that the probability of hitting the boundary at a point
other than the origin is positive. Firstly, Y1 must be positive, since X1 is not non-increasing.
But for a positive u we may again apply (3.3), showing that hitting the ray (x, 0), x> 0, is
possible. This also shows that hitting D1

h for any h> 0 and any starting position (u, v) occurs
with positive probability. A similar argument holds for the other component, which completes
the proof. �

The following lemma shows that if the initial capital of one of the companies is sufficiently
large, then this company will dominate with probability close to one. Its proof is based on the
law of large numbers (3.1) for Lévy processes.

Lemma 3.2. If the conditions (A1) and (A2) are satisfied, then for any ε > 0 there exists u0 =
u0(ε) � 0 such that

p1(u, v) � 1 − ε

for all v � 0 and u � (r2v) ∨ u0. Also, a similar assertion holds true for p2.
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Proof. We note that (3.1) implies

sup
t�T

Xi(t)

t
P−→μi, T → ∞, i = 1, 2.

Therefore, fixing arbitrarily small ε > 0 (more precisely, we will later need that ε < ε0, where
ε0 = (r2|μ2| − |μ1|)/(2r2 + 2)> 0), we can choose T = T(ε)> 0 such that

P

{
sup
t�T

max
i=1,2

∣∣∣∣Xi(t)

t
−μi

∣∣∣∣< ε
}

= P

{
max
i=1,2

sup
t�T

∣∣∣∣Xi(t)

t
−μi

∣∣∣∣< ε
}
� 1 − ε

2
.

Then we have
(μi − ε)t< Xi(t)< (μi + ε)t, t � T, i = 1, 2, (3.4)

with probability not less than 1 − ε/2. Also, let u0 > 0 be so large that

P
{−X1(T)< u0

}
� 1 − ε/2.

In the rest of the proof we focus on the intersection of these two events, which has probability
not less than 1 − ε.

Now, fix arbitrary v � 0 and u � (r2v) ∨ u0, consider the random time

τ = inf{t � 0 | L1(t)> 0}� T,

and let us show that actually τ = ∞. Indeed, we first note that if τ = T , then L1(τ ) = 0,
because

Y1(τ ) = Y1(T) � u + X1(T) � u0 − (−X1(T)
)
> 0.

Moreover, if τ > T , then, by the definition of τ , for any T � t< τ we have L1(t) = 0, and using
(3.4) we obtain

L2(t) � sup
0�s�t

(−v − X2(s) − r1L1(s))+ = sup
0�s�t

(−v − X2(s)
)+

� sup
T�s�t

(−v − X2(s)
)+ � (|μ2| − ε)t − v. (3.5)

Hence, for such t we have

Y1(t) � u + X1(t) + r2L2(t) � u − (|μ1| + ε)t + r2(|μ2| − ε)t − r2v � (u − r2v) + ct> 0,

where c = (r2|μ2| − |μ1|)/2> 0. Furthermore, the fact that X1(τ ) �−(|μ1| + ε)τ and L2 is
monotone implies that this bound also holds true for t = τ .

Therefore, in both cases we have Y1(τ )> 0. Owing to the right continuity of X1 and mono-
tonicity of L1 and L2, we have Y1(t)> 0 for any t ∈ (τ, τ + δ) with sufficiently small δ > 0.
This means that L1(t) = 0 for t ∈ (τ, τ + δ), which contradicts the definition of τ .

Thus, we conclude that for u � (r2v) ∨ u0 the stochastic process Y1 stays positive at all
times. So for all t � 0 we have

Y1(t) = u + X1(t) + r2L2(t), Y2(t) = v + X2(t) + L2(t),

L2(t) = sup
0�s�t

(−v − X2(s)
)+.
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It is easy to check that

lim
t→∞

L2(t)

t
= |μ2|, lim

t→∞
Y1(t)

t
= r2|μ2| − |μ1|> 0, lim

t→∞
Y2(t)

t
= 0.

Hence, the event of interest is ensured with probability not less than 1 − ε.
The same argument is valid for the corresponding assertion with p2. �
Proof of Theorem 3.1. Fix arbitrary u, v � 0. For any ε > 0 choose u0 = u0(ε)> 0 and v0 =

v0(ε)> 0 as in Lemma 3.2, set h = u0 ∨ v0, and consider

τ1 = inf
{

t � 0 : Y(t) ∈ D1
h

}
, τ2 = inf

{
t � 0 : Y(t) ∈ D2

h

}
,

which are stopping times with respect to the given filtration.
By Lemma 3.1 the event {τ1 <∞} has positive probability, and on this event the shifted

process X′(t) = X(τ1 + t) − X(τ1) has the same law as the original Lévy process and is inde-
pendent of the corresponding position Y(τ1) ∈ D1

u0
(see [6, Proposition I.6]). Therefore, noting

that

p1(u, v) = P(u,v)

{
τ1 <∞, Y1(t) → ∞,

Y2(t)

Y1(t)
→ 0

}
,

we obtain, by Lemma 3.2,

p1(u, v) =E(u,v)

[
1I{τ1 <∞} · PY(τ1)

{
Y1(t) → ∞,

Y2(t)

Y1(t)
→ 0

}]
� (1 − ε) · P(u,v){τ1 <∞},

and so
(1 − ε) · P(u,v){τ1 <∞}� p1(u, v) � P(u,v){τ1 <∞}. (3.6)

Similar bounds hold true for p2(u, v) and τ2. Hence, according to Lemma 3.1, both p1 and
p2 are positive, which proves the first assertion, and also p1 + p2 � 1 − ε, which, by the
arbitrariness of ε, implies the second assertion. �

4. Approximation

4.1. Assumptions

Throughout this section we consider a sequence of bivariate Lévy processes X(n) converging
weakly to X with respect to the Skorokhod J1-topology [26, Section 3.3]. This is equivalent to

X(n)(1)
d−→X(1), (C1)

or to the convergence of the Lévy exponents [17, Theorem 15.17]. Furthermore, we assume
that the means also converge:

μ(n) =EX(n)(1) →EX(1) =μ, (C2)

which is equivalent, in view of (C1), to the uniform integrability of X(n)(1).
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It is assumed that the reflected processes Y and Y (n) are well-defined, so that they satisfy
(2.1) and (2.5). Now we may expect that

Y (n) d−→Y whenever R
2+ 
 (u(n), v(n))→ (u, v), (C3)

which is indeed broadly satisfied for our models, including the case when Y is a reflected
Brownian motion, as shown by [28]. Nevertheless, some exceptions exist, as we now describe.
The degenerate case is given by a drifted compound Poisson process with linear drifts ci > 0
and jumps distributed as (J1, J2), where

ci = rjcj and Ji − rjJj has a point mass (4.1)

for some i ∈ {1, 2} and j �= i.

Lemma 4.1 (Convergence of reflected processes). The convergence in (C1) implies (C3) in the
following cases:

• Y is a reflected Brownian motion and (C2) holds;

• Y, Y (n) are as defined in Section 2.2, apart from the case where X is a drifted compound
Poisson process satisfying (4.1).

Proof. The first statement is a consequence of [28, Theorem 4.1 and Proposition 4.2(III)],
where uniform integrability and the martingale property readily follow from (C2).

Next, we consider the iterative construction of the reflected process, and recall that the one-
dimensional reflection is a continuous map [26, Section 13.5]. It is important that we resolve
non-uniqueness of (2.3) in the same way for all processes; recall that we have chosen to restart
the processes from the origin if ambiguity arises. Our reflection map is then continuous at
sample paths requiring finitely many iterations and not hitting the boundary of the wedge right
before the application of linear complementarity; see Figure 2. It is thus sufficient to show that
the boundary of the wedge is not hit at the time T1 in the construction of the limit process Y
with probability 1.

Suppose that this occurs with positive probability. Since the jumps of X below some nega-
tive threshold are independent, we see that Y(T1 − ) must have a mass on some line parallel to
one of the wedge boundaries. Furthermore, we may replace T1 by an independent exponential
time. Assume for a moment that X is not compound Poisson, in which case the distribu-
tion of Xt for any t> 0 is continuous [23, Theorem 27.4]. Ignoring the reflection we easily
derive a contradiction by taking t small and projecting X onto the perpendicular direction.
This argument can be extended to the case when X1 does not spend time at the boundary (the
Lebesgue measure is 0). In the only other case we may look at X2 − r1X1 to get the contradic-
tion. Finally, assume that X is a compound Poisson. The only possibility here is that included
into (4.1). �

4.2. The result and its proof

Let us now state the approximation result for the domination probabilities. In fact, we show
continuous convergence in the sense that perturbations in the initial positions are also allowed.
Importantly, (C3) is equivalent to convergence of the reflected process on compact intervals of
time, and thus convergence of the limiting quantities is not obvious.
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Theorem 4.1 (Invariance principle). Assume that X satisfies the conditions of Theorem 3.1,
and let X(n) be a sequence of bivariate Lévy processes approximating X so that (C1), (C2), and
(C3) hold. Then

lim
n→∞ p(n)

i

(
u(n), v(n))= pi(u, v), i = 1, 2,

whenever R2+ 
 (u(n), v(n)
)→ (u, v). In particular, the pi are continuous for such X.

The main ingredient of the proof is the following uniform law of large numbers for Lévy
processes.

Lemma 4.2. Let X, X(n) be bivariate Lévy processes satisfying (C1) and (C2). Then

lim
T→∞ lim sup

n→∞
P

{
sup
t�T

max
i=1,2

|X(n)|(t)
i t −μi

>
ε

}
= 0 (4.2)

for any ε > 0.

Proof. Without loss of generality, we consider the one-dimensional case and assume that
μ= 0. Let us show that the stochastic process {M−t = X(t)/t, t> 0} is a martingale with
respect to the filtration G−t = σ {X(t + s), s � 0}, i.e., that for any t> 0 and s � 0,

E

[
X(t)

t

∣∣∣∣ X(t + s)

]
= X(t + s)

t + s
. (4.3)

By the right continuity of the sample paths, it is sufficient to take t = m(t + s)/n for some
integers m � n. However, it is a standard fact that for independent and identically distributed
Zi with finite first moment we have the identity

E[Z1 + · · · + Zm | Z1 + · · · + Zn] = m

n
(Z1 + · · · + Zn),

and taking Zi = X(i(t + s)/n) − X((i − 1)(t + s)/n) we get (4.3).
Now, by Doob’s martingale inequality [17, Proposition 7.15], for any T ′ > T we have

P

{
sup

t∈[T,T ′]

|X(t)|
t

� ε
}
� 1

ε
· E|X(T)|

T
, (4.4)

which, by passing to the limit, readily extends to the infinite time interval [T,∞).
Thus, to prove (4.2), it is sufficient to show that

lim
T→∞ lim sup

n→∞
E|X(n)|(T)

T
= 0.

However, for a fixed T we have X(n)(T)
d−→X(T) as n → ∞, which implies the convergence of

the mean absolute values, because the families X(n)(1), n � 1, and thus also X(n)(T), n � 1,
are uniformly integrable. Finally, from (4.4) with the infinite time interval [T,∞), it is easy
to deduce that the family |X(t)|/t, t � T , is uniformly integrable, and so E|X(T)|/T → 0 as
T → ∞ (see also [23, Theorem 36.5]). �

Proof of Theorem 4.1. Fix ε > 0 and note that the bounds in (3.6) hold for all large n,
since then the conditions (A1) and (A2) are satisfied. Note, however, that u0 there depends
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on n. Nevertheless, we can choose u(n)
0 = u0 independently of n; see the proof of Lemma 3.2.

This is so because we may use the same T according to Lemma 4.2, but then X(n)
1 (T)

d−→X1(T).
Furthermore, the bounds in Lemma 3.2 are also true if the set D′

u0
= {(u, v) ∈R

2+ : u � (r2v) ∨
u0} is replaced by D1

u0+δ for any δ > 0 as defined in Lemma 3.1.

Let p1(T) be the probability that Y hits D1
u0+1 on [0,T] starting from (u,v), and let p(n)

1 (T) be

the probability that Y (n) hits D′
u0

on [0,T] starting from
(
u(n), v(n)

)
. We choose T � 0 so large

that

0 � P(u,v)
{
Y hits D1

u0+1

}− p1(T)< ε.

Then, by (3.6),

p1(u, v) � P(u,v)
{
Y hits D1

u0+1

}
< p1(T) + ε

and

p1(u, v) � (1 − ε) · P(u,v)
{
Y hits D1

u0+1

}
� (1 − ε) · p1(T).

Similarly,

(1 − ε) · p(n)
1 (T) � p(n)

1

(
u(n), v(n))< p(n)

1 (T) + ε.

By the assumption (C3), we have Y (n) d−→Y in D([0, T]) × D([0, T]), and so

p(n)
1 (T)> p1(T) − ε

for all large enough n. Therefore, for all large enough n we obtain

p1(u, v) − p(n)
1

(
u(n), v(n))< (p1(T) + ε) − (p1(T) − ε)(1 − ε)< 3ε.

Similarly,

p2(u, v) − p(n)
2

(
u(n), v(n))< 3ε,

which, owing to Theorem 3.1 and the inequality p(n)
1

(
u(n), v(n)

)+ p(n)
2

(
u(n), v(n)

)
� 1, implies

that

3ε > p1(u, v) − p(n)
1

(
u(n), v(n))= 1 − p2(u, v) − p(n)

1

(
u(n), v(n))

� p(n)
2

(
u(n), v(n))− p2(u, v)>−3ε.

Thus, we conclude that p(n)
1

(
u(n), v(n)

)→ p1(u, v), n → ∞. �

4.3. Poissonian approximation of Brownian motion

Here we consider an approximation of the correlated Brownian motion via compound
Poisson processes that allow both common and individual jumps with exponential distribution.
This model may be useful for financial applications.

Let N,N1,N2 be independent Poisson processes with rates λ, λ1, λ2 > 0 respectively,
and let Jk, J(1)

k , J(2)
k , k � 1, be independent standard exponential random variables that are
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also independent of N,N1,N2. Consider a drifted compound Poisson process X = (X1, X2)
given by

Xi(t) = cit − 1

qi

N(t)∑
k=1

Jk − 1

qi

Ni(t)∑
k=1

J(i)
k , i = 1, 2, (4.5)

where ci, qi, qi > 0 are fixed parameters. Note that the qi scale the common jumps (shocks),
whereas q1, q2 are the rate parameters of the individual exponential jumps.

The corresponding Laplace exponent ψ(s1, s2) = log Ees1X1(1)+s2X2(1) is given by

ψ(s1, s2) = s1c1 + s2c2 − (λ+ λ1 + λ2) + λ

1 + s1/q1 + s2/q1
+ λ1

1 + s1/q1
+ λ2

1 + s2/q2

(4.6)

for s1, s2 � 0. Differentiating ψ twice, we readily obtain

EXi(1) = ci − λ/qi − λi/qi,

var(Xi(1)) = 2λ/q2
i + 2λi/q

2
i ,

cov(X1(1), X2(1)) = 2λ/
(
q1q2

)
.

Lemma 4.3 (Approximation of Brownian motion). For any σi > 0, μi ∈R, and ρ ∈ [0, 1],
there exist parameters ci, qi, qi, λi, λ > 0 such that

EXi(1) =μi, var(Xi(1)) = σ 2
i , cov(X1(1), X2(1)) = ρσ1σ2.

This is also true for a drifted compound Poisson process X(n) with parameters

λ(n) = λn, λ(n)
i = λin, q(n)

i = qi
√

n, q(n)
i = qi

√
n,

c(n)
i =μi +

(
λ/qi + λi/qi

)√
n, (4.7)

and the X(n) thus defined converge weakly, as n → ∞, to the Brownian motion with means μi,
variances σ 2

i , and correlation ρ.

Proof. It is enough to take parameters such that

λ/q2
i = 1

2
ρσ 2

i , λi/q
2
i = 1

2
(1 − ρ)σ 2

i

with λ, λ1, and λ2 large enough for c1 =μ1 + λ/q1 + λ1/q1 and c2 =μ2 + λ/q2 + λ2/q2 to
be positive. Straightforward calculation shows that

ψ (n)(s1, s2) → 1

2

(
σ 2

1 s2
1 + 2ρσ1σ2s1s2 + σ 2

2 s2
2

)
+μ1s1 +μ2s2,

and so we have X(n) d−→W according to [17, Theorem 15.17], where W is a Brownian motion
with the given parameters. �

In conclusion, the above-defined drifted compound Poisson processes X(n) with exponential
jumps can be used to approximate a given Brownian motion X with non-negative correlation
ρ ∈ [0, 1) and means satisfying (A1) and (A2), with (A3) being automatic. The construction of
Y (n) is straightforward (see Section 2.2), and the conditions of Theorem 4.1 are satisfied. Thus,
the total domination probabilities for X can be derived from those for X(n), which we indeed
use to derive the Brownian kernel equation in the next section.
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5. Kernel equations

In the following we study the total domination probability p1(u, v) for two basic models. In
fact, our focus is on the Laplace transform of p1 and its restrictions where one initial position
is fixed at 0:

F(s1, s2) =
∫∫

R
2+

e−s1u−s2vp1(u, v)dudv,

F1(s1) =
∞∫

0

e−s1up1(u, 0)du, F2(s2) =
∞∫

0

e−s2vp1(0, v)dv,

(5.1)

where s1, s2 > 0. It is noted that

F̂(s1, s2) = s1s2F(s1, s2)

can be seen as the total domination probability of the first component when starting at inde-
pendent exponential positions with rates s1 and s2. Moreover, F̂(s1, s2) → s1F1(s1), s2 → ∞,
noting that p1 is continuous by Theorem 4.1, apart from the case (4.1).

Finally, we observe that rescaling of the model in (2.6) results in F̂′(s1, s2) = F̂(a1s1, a2s2).
This, for example, allows us to assume that μ′

1 =μ′
2 = −1 by taking ai = 1/|μi|, in which case

(A2) reads simply r′
i > 1. Alternatively, in the Brownian model we may take σi = 1 without any

loss of generality.

5.1. Compound Poisson model

First, we consider the compound Poisson model from Section 4.3 with independent drivers
Xi having positive linear drifts ci and jump arrival rates λi, with the jumps being negative
exponentials with rates qi. The bivariate Laplace exponent of (X1, X2) is thus given by

ψ(s1, s2) = c1s1 + c2s2 − λ1 − λ2 + λ1

1 + s1/q1
+ λ2

1 + s2/q2
. (5.2)

Note that the choice of solution in (2.3) does not play a role in this case.

Proposition 5.1 (Poissonian kernel equation). Let the Laplace exponent ψ be given by (5.2)
with ci, λi, qi > 0 being such that (A1) and (A2) are satisfied with μi = ci − λi/qi and some
ri > 0. Then

ψ(s1, s2)F(s1, s2) = ψ1(s1, s2)
[
F1(s1) − F1 (q2/r2)

]+
+ ψ2(s1, s2)

[
F2(s2) − F2 (q1/r1)

]+ F0,
(5.3)

where

ψ1(s1, s2) = c2 − λ2q2

(q2 + s2)(q2 − r2s1)
, ψ2(s1, s2) = c1 − λ1q1

(q1 + s1)(q1 − r1s2)
,

F0 = c2F1 (q2/r2)+ c1F2 (q1/r1) .

It is important to note here that the kernel equation is explicit thanks to the assumption
of exponential jumps. A more general (and cumbersome) kernel equation is discussed in
Section 5.3, where the common shocks are allowed. This particular equation is an important
special case of Proposition 5.3.
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Notice that the kernel equation of Proposition 5.1 (as well as the one of Proposition 5.2)
can have many solutions. Actually, it seems possible to obtain the same kernel equation for
the Laplace transforms of P(u,v)(A) with A ∈⋂t�0 σ (Y(s), s � t), but a rigorous proof of this
generalization involves certain difficulties connected with the continuity and differentiabil-
ity of P(u,v)(A) that are hard to overcome. Thus, the kernel equation is a necessary condition
for p1(u, v), but not a sufficient one. The uniqueness of the solution will be obtained in the
following sections assuming the limit properties of Theorem 3.1.

Next, we determine the constant F0, which also yields a simple expression for
F̂(q2/r2, q1/r1). For this purpose, we define the points

x0 := λ1

c1
− q1 > 0 and y0 := λ2

c2
− q2 > 0, (5.4)

which satisfy

ψ(x0, 0) =ψ2(x0, 0) = 0, ψ(0, y0) =ψ1(0, y0) = 0, and ψ(x0, y0) = 0;

see also Figure 5 below.

Lemma 5.1. In the setting of Proposition 5.1 we have

F0 = r1(r2|μ2| − |μ1|)
r1r2 − 1

(
c1

q1|μ1| + r2c2

q2|μ2|
)
> 0. (5.5)

Proof. The limits in Theorem 3.1 imply that F̂(0+, y0) = F̂1(0 + ) = 1 and F̂(x0, 0 + ) =
F̂2(0 + ) = 0. Evaluating the kernel equation (5.3) at three points (x0, 0 + ), (0+, y0), and
(x0, y0), we obtain the equalities

0 =ψ1(x0, 0)
[
F1(x0) − F1 (q2/r2)

]+ F0, (5.6)

c1 − λ1/q1

y0
= − r2c2

q2
+ψ2(0, y0)

[
F2(y0) − F2 (q1/r1)

]+ F0,

0 =ψ1(x0, y0)
[
F1(x0) − F1 (q2/r2)

]+ψ2(x0, y0)
[
F2(y0) − F2 (q1/r1)

]+ F0.

We can now express F0 as

F0 =
(

c1 − λ1/q1

y0
+ r2c2

q2

)
ψ2(x0, y0)

ψ2(0, y0)

/(
ψ1(x0, y0)

ψ1(x0, 0)
+ ψ2(x0, y0)

ψ2(0, y0)
− 1

)
,

which upon simplification yields the stated expression. �
Importantly, the kernel equation (5.3) can be rewritten in a homogeneous form:

ψ(s1, s2)f (s1, s2) =ψ1(s1, s2)f1(s1) +ψ2(s1, s2)f2(s2), (5.7)
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where the new functions are given by

f (s1, s2) = F(s1, s2) − F0/F̃0

s1s2
, F̃0 = c1r1

q1
+ c2r2

q2
, (5.8)

f1(s1) = F1(s1) − F1(q2/r2) − F0

F̃0

(
1

s1
− r2

q2

)
,

f2(s2) = F2(s2) − F2(q1/r1) − F0

F̃0

(
1

s2
− r1

q1

)
. (5.9)

This follows from realizing that

ψ(s1, s2)
1

s1s2
=ψ1(s1, s2)

1

s1
+ψ2(s1, s2)

1

s2
+ F̃0,

multiplying it by F0/F̃0, and subtracting from the original kernel equation.

5.2. Correlated Brownian motion

Secondly, we consider a correlated Brownian motion X with means μi < 0, variances σ 2
i >

0, and correlation ρ ∈ [0, 1), so that

ψ(s1, s2) = 1

2

(
σ 2

1 s2
1 + 2ρσ1σ2s1s2 + σ 2

2 s2
2

)+μ1s1 +μ2s2. (5.10)

We exclude ρ = 1, because of the condition (A3), and ρ < 0 is likely to be similar but requires
another approximating model and the concomitant tedious analysis. Again, the ambiguity
present in (2.3) does not arise.

Proposition 5.2 (Brownian kernel equation). Let the Laplace exponent ψ be given by (5.10)
with μi < 0 satisfying (A2) and ρ ∈ [0, 1). Then

ψ(s1, s2)F(s1, s2) =ψ1(s1, s2)F1(s1) +ψ2(s1, s2)F2(s2) + cp1(0, 0), (5.11)

where

ψ1(s1, s2) =μ2 + 1

2
σ 2

2 (s2 − r2s1) + ρσ1σ2s1,

ψ2(s1, s2) =μ1 + 1

2
σ 2

1 (s1 − r1s2) + ρσ1σ2s2,

c = 1

2

(
r1σ

2
1 + r2σ

2
2

)− ρσ1σ2. (5.12)

The proof of this proposition is given in Subsection 5.4.
Interestingly, here and in Proposition 5.1 the quantities ψi can be expressed as ψ1(s1, s2) =

(ψ(s1, s2) −ψ(s1,−r2s1))/(s2 + r2s1), which are the same as in [16], which studies the
probabilities of hitting the origin in a different regime.

Importantly, the above kernel equation implies a simple formula for the domination prob-
ability when starting at the origin, but only in the independent case. For later use define

x0 := −2μ1

σ 2
1

> 0 and y0 := −2μ2

σ 2
2

> 0, (5.13)
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which satisfy ψ(x0, 0) =ψ2(x0, 0) = 0 and ψ(0, y0) =ψ1(0, y0) = 0. Importantly, for ρ = 0
we also have ψ(x0, y0) = 0.

Corollary 5.1. In the setting of Proposition 5.2 with ρ = 0 there is the formula

p1(0, 0) = r1(r2|μ2| − |μ1|)
(
σ 2

1 |μ2| + r2σ
2
2 |μ1|

)
|μ1||μ2|(r1r2 − 1)

(
r1σ

2
1 + r2σ

2
2

) . (5.14)

Proof. We again use the limits F̂(0+, y0) = F̂1(0 + ) = 1 and F̂(x0, 0 + ) = F̂2(0 + ) = 0.
Evaluating the kernel equation (5.11) at three points (x0, 0 + ), (0+, y0), and (x0, y0), we obtain
the equalities

0 =ψ1(x0, 0)F1(x0) + cp1(0, 0),
μ1

y0
= − r2

2
σ 2

2 +ψ2(0, y0)F2(y0) + cp1(0, 0), (5.15)

0 =ψ1(x0, y0)F1(x0) +ψ2(x0, y0)F2(y0) + cp1(0, 0).

It remains to express p1(0, 0) and to simplify the final formula. �
Finally, we can rewrite the kernel equation (5.11) in a homogeneous form:

ψ(s1, s2)f (s1, s2) =ψ1(s1, s2)f1(s1) +ψ2(s1, s2)f2(s2), (5.16)

where the new functions are given by

f (s1, s2) := F(s1, s2) − p1(0, 0)

s1s2
,

f1(s1) := F1(s1) − p1(0, 0)

s1
, f2(s2) := F2(s2) − p1(0, 0)

s2
.

(5.17)

5.3. Common jumps

Here we consider the compound Poisson model with common jumps/shocks described in
Section 4.3. Importantly, (4.1) is only satisfied if both

ci = rjcj and qi = qj/rj (5.18)

for some i �= j. Hence, apart from this case the probability p1(u, v) is continuous.

Proposition 5.3. Consider X defined in (4.5), where λ� 0 and the means μi = ci − λ/qi −
λi/qi < 0 satisfy (A2), but (5.18) is not true for both i �= j.

• If r1/q1 > 1/q2 and r2/q2 > 1/q1, then the following kernel equation is satisfied:

ψ(s1, s2)F(s1, s2) =ψ1(s1, s2)F1(s1) +ψ2(s1, s2)F2(s2)

+ψ3(s1, s2)F1

(
r1 + s1

(
r1/q1 − 1/q2

)
(r1r2 − 1)/q2

)
+ψ4(s1, s2)F2

(
r2 + s2

(
r2/q2 − 1/q1

)
(r1r2 − 1)/q1

)
+ψ5(s1, s2)F1 (q2/r2)+ψ6(s1, s2)F2 (q1/r1)+ψ0(s1, s2)p1(0, 0), (5.19)
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where ψ is given in (4.6) and

ψ0(s1, s2) = −
λ
[ (

r1/q1 − 1/q2
) (

r2/q2 − 1/q1
) (

1 + s1/q1 + s2/q2
)+ r1/q2

1 + r2/q2
2 − 2/

(
q1q2

) ](
1 + s1/q1 + s2/q2

) (
r1 + (r1/q1 − 1/q2

)
s1
) (

r2 + (r2/q2 − 1/q1
)

s2
) ,

ψ1(s1, s2) = c2 − λ/q2(
1 + s1/q1 + s2/q2

) (
1 − (r2/q2 − 1/q1

)
s1
) − λ2/q2

(1 + s2/q2)(1 − r2s1/q2)
,

ψ2(s1, s2) = c1 − λ/q1(
1 + s1/q1 + s2/q2

) (
1 − (r1/q1 − 1/q2

)
s2
) − λ1/q1

(1 + s1/q1)(1 − r1s2/q1)
,

ψ3(s1, s2) = λ/q2(
1 + s1/q1 + s2/q2

) (
1 − (r2/q2 − 1/q1

)
s1
) ,

ψ4(s1, s2) = λ/q1(
1 + s1/q1 + s2/q2

) (
1 − (r1/q1 − 1/q2

)
s2
) ,

ψ5(s1, s2) = λ2/q2(
1 + s2/q2

)(
1 − r2s1/q2

) ,
ψ6(s1, s2) = λ1/q1(

1 + s1/q1

)(
1 − r1s2/q1

) .

• If r1/q1 > 1/q2 and r2/q2 � 1/q1, then the following kernel equation is satisfied:

ψ(s1, s2)F(s1, s2) =ψ1(s1, s2)F1(s1) +ψ2(s1, s2)F2(s2)

+ψ3(s1, s2)F1

(
r1 + s1

(
r1/q1 − 1/q2

)
(r1r2 − 1)/q2

)
+ψ4(s1, s2)F2

(
1 − (r2/q2 − 1/q1

)
s1

(r1r2 − 1)/q2

)
+ψ5(s1, s2)F1 (q2/r2)+ψ6(s1, s2)F2 (q1/r1)

+ψ7(s1, s2)F2
(
1/
(
r1/q1 − 1/q2

))+ψ0(s1, s2)p1(0, 0),

where ψ is given in (4.6); ψ1, ψ2, ψ3, ψ5, and ψ6 are the same as above; and

ψ0(s1, s2) = − λ(r1r2 − 1)/q2
2(

1 + s1/q1 + s2/q2
)(

r1 + (r1/q1 − 1/q2
)
s1
)(

1 − (r2/q2 − 1/q1
)
s1
) ,

ψ4(s1, s2) = λ/q2(
1 + s1/q1 + s2/q2

)(
r1 + (r1/q1 − 1/q2

)
s1
) ,

ψ7(s1, s2) = λ
(
r1/q1 − 1/q2

)(
r1 + (r1/q1 − 1/q2

)
s1
)(

1 − (r1/q1 − 1/q2
)
s2
) .

• If r1/q1 � 1/q2 and r2/q2 > 1/q1, then the kernel equation coincides with that for the
previous case with the indices changed correspondingly.

The derivation is tedious and thus is postponed to Appendix A. It is based on the analysis of
all the non-negligible scenarios on the infinitesimal time interval [0,h] and the strong Markov
property. Then we take transforms and the limit as h ↓ 0, which are followed by lengthy alge-
braic manipulations. It is important here that the probability p1 is continuous as mentioned
above.

Note that the kernel equation (5.3) follows immediately from (5.19) by taking λ= 0, where
every case can be used, since the qi are arbitrary.
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5.4. Derivation of the Brownian kernel by approximation

The proof of (5.11) is based on the approximation in Section 4.3.

Proof of Proposition 5.2. Let us choose the approximating models as specified in Lemma
4.3, and consider the sequence of kernel equations in (5.19). Importantly, we can always avoid
the degenerate case in (5.18) for each n; in addition, considering here, for the sake of brevity,
only the case when r1σ1 >σ2 and r2σ2 >σ1, we can also choose the approximating parameters
so that r1/q

(n)
1 > 1/q(n)

2 and r2/q
(n)
2 > 1/q(n)

1 .
Now we recall that ψ (n)(s1, s2) →ψ(s1, s2), and by Theorem 4.1 and the dominated con-

vergence theorem, we have F(n)(s1, s2) → F(s1, s2) and F(n)
i (si) → Fi(si) for i = 1, 2. Also, it

is easy to check that

ψ
(n)
0 (s1, s2) → −ρσ1σ2 + ρ

2

(
σ 2

1

r2
+ σ 2

2

r1

)
,

ψ
(n)
i (s1, s2) →μi + 1

2
σ 2

i

(
si − risj

)+ ρσ1σ2sj, (i, j) = (1, 2) or (2, 1).

Furthermore,

ψ
(n)
3 (s1, s2)F(n)

1

(
r1q(n)

2 + s1
(
r1q(n)

2 /q(n)
1 − 1

)
r1r2 − 1

)
→ ρσ 2

2

2
· r1r2 − 1

r1
· p1(0, 0),

ψ
(n)
4 (s1, s2)F(n)

2

(
r2q(n)

1 + s2
(
r2q(n)

1 /q(n)
2 − 1

)
r1r2 − 1

)
→ ρσ 2

1

2
· r1r2 − 1

r2
· p1(0, 0),

and

ψ
(n)
5 (s1, s2)F1

(
q(n)

2 /r2

)
→ 1

2
(1 − ρ)σ 2

2 r2p1(0, 0),

ψ
(n)
6 (s1, s2)F2

(
q(n)

1 /r1

)
→ 1

2
(1 − ρ)σ 2

1 r1p1(0, 0).

Combining the obtained values we arrive at the stated result. All other cases can be
considered in a similar way and lead to the same kernel equation. �

6. Explicit solution for the Poissonian model

In this section we solve the kernel equation (5.3) by establishing an explicit integral expres-
sion for the Laplace transform F1(s1) (see Theorem 6.1 below), with F2(s2) being analogous.
Additionally, in Corollary 6.1 we determine p1(0, 0), the probability of total domination start-
ing from the origin, and in Lemma 5.1 we find a simple formula for F(q2/r2, q1/r1). It would
be interesting to understand whether this formula can be explained by a direct probabilistic rea-
soning. We also obtain the asymptotics of p1(u, 0) and p1(0, v) as u, v → ∞; see Proposition
6.1. We adapt the analytic method from [11] which relies on the following steps: study of the
kernel ψ , analytic continuation of F1 and study of its singularities, formulation of a boundary
value problem (BVP) and its solution.

Without stating it explicitly we assume in the following that our parameters satisfy the
conditions of Proposition 5.1.
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6.1. Study of the kernel

Consider the kernel ψ(s1, s2) given in (5.2). The basic idea is to consider its zeros, and so
we define the bi-valued functions S1 and S2 such that

ψ(S1(s2), s2) = 0 and ψ(s1, S2(s1)) = 0.

To do so, we remark that ψ(s1, s2) = 0 is equivalent to

a(s1)s2
2 + b(s1)s2 + c(s1) = 0

where

a(s1) := s1c2 + c2q1, b(s1) := s2
1c1 + s1(c1q1 + c2q2 − λ1 − λ2) − λ2q1 + c2q2q1,

c(s1) := s2
1c1q2 + s1

(−λ1q2 + c1q1q2
)
.

We also note

d(s1) := b2(s1) − 4a(s1)c(s1),

which is a fourth-degree polynomial with roots denoted by x1, x2, x3, x4. Similarly we define
ã, b̃, c̃, d̃, and let yi be the four roots of d̃. Then we have

S2(s1) := −b(s1) ± √
d(s1)

2a(s1)
and S1(s2) := −̃b(s2) ±

√
d̃(s2)

2̃a(s2)
.

The branch points of S2 are the points xi and the branch points of S1 are the points yi.

Lemma 6.1 (Branch points). The polynomial d(s1) has four real roots xi, which satisfy

−q1 < x1 < x2 < 0<−q1 +√λ1q1/c1 < x3 < x4.

The polynomial d is then negative on [x1, x2] ∪ [x3, x4] and positive on R \ ([x1, x2] ∪ [x3, x4]).
The same result holds for the roots yi of d̃.

Proof. First, remark that for all s1 ∈ (−∞,−q1] ∪ [0, λ1/c1 − q1] we have −4a(s1)c(s1) �
0 and then d(s1)> 0 (since the roots of b are different from −q1, 0, λ1/c1 − q1). For
s1 ∈ (−q1, 0) ∪ (λ1/c1 − q1,∞) we have −4a(s1)c(s1)< 0. We denote by x± the two roots
of b and remark that −q1 < x− < 0<λ1/c1 − q1 < x+, so that d(x±) = −4a(x±)c(x±)<
0. Additionally, we have d(s1) → +∞ as s1 → +∞. Now we conclude by applying the
intermediate value theorem and noticing that −q1 + √

λ1q1/c1 < x+. �
By Lemma 6.1, d(s1) is positive for s1 ∈ [x2, x3], and on this interval we can take the usual

square root d without sign ambiguity. We define
√

d as the analytic function on the cut plane
C \ ([x1, x2] ∪ [x3, x4]) which coincides with the usual square root of d on [x2, x3]. We denote
by S+

2 the branch of the bi-valued function S2 which is equal to (−b + √
d)/(2a) and which is

analytic on C \ ([x1, x2] ∪ [x3, x4]). We denote by S−
2 the other branch. See Figures 4 and 5 to

visualize these functions on R. In the same way, we denote by S+
1 and S−

1 the two branches of
S1 which are analytic on C \ ([y1, y2] ∪ [y3, y4]).

For further use, we define the curve

C1 := S±
1 ([y3, y4]) =

{
−̃b(y) ± i

√
−d̃(y)

2̃a(y)
: y ∈ [y3, y4]

}
.
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FIGURE 4. General shape of the curve {(s1, s2) ∈R
2 :ψ(s1, s2) = 0} divided into two parts: the function

S−
2 (blue) and the function S+

2 (red).

FIGURE 5. Zoom of Figure 4: the branch points xi and yi are in black, and the points x0 and y0 are in
green.

This curve will be the boundary in the BVP established in Section 6.3.

Lemma 6.2 (The circle C1). The curve C1 is a circle with centre at −q1 and radius
√
λ1q1

c1
.

Proof. By definition, if s1 ∈ C1, then there exists s2 ∈ [y3, y4] such that ψ(s1, s2) = 0, and
we also have s1 ∈ C1 and ψ(s1, s2) = 0. This implies that ψ(s1, s2) =ψ(s1, s2); that is,

c1s1 + λ1q1

s1 + q1
= c1s1 + λ1q1

s1 + q1
.

Then we find that

|s1 + q1|2 = λ1q1

c1
.

https://doi.org/10.1017/apr.2022.2 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.2


24 V. FOMICHOV ET AL.

FIGURE 6. Complex plane of the s1 variable: the branch points xi and the cuts on the complex plane are
in blue, while the circle C1 and the domain D1 are in green.

We deduce that C1 is included in the circle with centre −q1 and radius
√
λ1q1

c1
. Furthermore, as

S+
1 (yi) = S−

1 (yi), this implies that C1 is a closed curve, which concludes the proof. �

In fact, we may choose the interval [y1, y2] instead of [y3, y4], since C1 = S±
1 ([y1, y2]).

Finally, we define the domain

D1 :=
{

s1 ∈C : |s1 + q1|2 > λ1q1

c1

}
,

which is the complement of the disc defined by the circle C1; see Figure 6. We deduce from
Lemma 6.1 that x3, x4 are in D1 and that x1, x2 are not.

6.2. Analytic continuation and asymptotics

The goal of this section is to analytically continue F1 to the domain D1 and to study its
singularities in order to compute the asymptotics of p1(u, 0) and p1(0, v); see Proposition 6.1.

Lemma 6.3 (Analytic continuation). The function F1(s1) can be meromorphically extended to
the set

{s1 ∈C : �s1 > 0 or �S+
2 (s1)> 0}

thanks to the formula

F1(s1) = F1(q2/r2) + ψ2
(
s1, S+

2 (s1)
) [

F2(q1/r1) − F2
(
S+

2 (s1)
)]− F0

ψ1
(
s1, S+

2 (s1)
) . (6.1)

The analogous result holds for F2.

Proof. We are going to use the principle of analytic continuation. The Laplace transforms
Fi(s) are analytic on {s ∈C : �s> 0}. According to the kernel equation (5.3), for s1 and s2 with
positive real parts and such that ψ(s1, s2) = 0 we have

0 =ψ1(s1, s2)(F1(s1) − F1(q2/r2)) +ψ2(s1, s1)(F2(s2) − F2(q1/r1)) + F0.
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FIGURE 7. Representation of the s1-complex plane: the domain D := {s1 ∈C : �S+
2 (s1)> 0} is in yellow;

the red curve is the set {s1 ∈C : �S+
2 (s1) = 0}. The red dotted curve is the set {s1 ∈C : �S−

2 (s1) = 0} (note
that we do not use this curve).

When s1 → 0 for s1 > 0 we have S+
2 (s1) → λ2

c2
− q2 = y0 > 0. Thus the open connected set

D :
{
s1 ∈C : �S+

2 (s1)> 0
}

intersects the open set {s1 ∈C : �s1 > 0}. For s1 in this intersection the equation (6.1) is satis-
fied. Then, defining F(s1) as in (6.1), we meromorphically extend F1 to the whole of D thanks
to the principle of analytic continuation. See Figure 7 for an illustration of the domain D. �
Lemma 6.4 (The domain D1). The set D1 is included in {s1 ∈C : �s1 > 0 or �S+

2 (s1)> 0},
and F1 is therefore meromorphic on D1.

Proof. It is enough to show that D1 ∩ {s1 ∈C : �s1 < 0} is included in the domain D. See
Figures 6 and 7 to visualize these sets. By definition, if s1 ∈ C1, we have S+

2 (s1) ∈ [y3, y4] and
then �S+

2 (s1)> 0. We deduce that the circle C1 is included in D. Furthermore, remark that

S+
2 (s1) ∼|s1|→∞ −c1

c2
s1,

which implies that when s1 is large and such that �s1 < 0 we have �S+
2 (s1)> 0. The maximum

principle applied to the function S+
2 (s1) implies that �S+

2 (s1) is positive on the set D1 ∩ {s1 ∈
C : �s1 < 0}. We conclude using Lemma 6.3. �

Let us recall that x2 and y2 are the roots defined in Lemma 6.1.

Lemma 6.5 (Poles of F1 and F2). The polynomial

P(s1) := (s1 − q2/r2)(s1 + q1)(r2c2 − c1) + λ2(s1 + q1) + λ1(s1 − q2/r2) (6.2)

has two real roots sp
1 ∈ (−q1, 0) and s̃p

1 when r2c2 − c1 �= 0 and one real root sp
1 ∈ (−q1, 0)

when r2c2 − c1 = 0.
The meromorphic function F1(s1) has at most two poles in {s1 ∈C : �s1 > 0 or �S+

2 (s1)>
0}, which are 0 and sp

1:
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• 0 is always a simple pole of F1;

• sp
1 is a (simple) pole of F1 if and only if ψ1

(
x2, S±

2 (x2)
)
< 0.

Furthermore, F1 has no poles in D1 and is analytic on this set.
In the same way we define sp

2 ∈ (−q2, 0), which is a (the only) pole of F2 if and only if
ψ2
(
S±

1 (y2), y2
)
< 0.

Proof. The function F1 is initially defined as a Laplace transform which converges on {s1 ∈
C : �s1 > 0}. Thus, F1 has no poles on this set. The limits in Theorem 3.1 imply that F̂1(0 + ) =
1 (and F̂2(0 + ) = 0), and we deduce that 0 is a simple pole of F1 (and that 0 is not a pole of
F2). The analytic continuation of F1 is obtained thanks to the formula (6.1). Therefore, the
only poles of F1 come from the values of s1 having negative real part such that

ψ1
(
s1, S+

2 (s1)
)= 0.

First, we show that the following system has three solutions: 0, sp
1, and s̃p

1. We have

{
ψ(s1, s2) = 0,

ψ1(s1, s2) = 0,
⇔

⎧⎪⎪⎪⎨⎪⎪⎪⎩
s1

(
c1 − λ1

q1 + s1

)
+ s2

(
c2 − λ2

q2 + s2

)
= 0,

− λ2

(q2 + s2)
= c2(s1r2 − q2)

q2
,

⇔

⎧⎪⎪⎪⎨⎪⎪⎪⎩
s1

((
c1 − λ1

q1 + s1

)
+ s2

c2r2

q2

)
= 0,

s2 = λ2q2

c2(q2 − s1r2)
− q2,

⇔

⎧⎪⎨⎪⎩
s1P(s1) = 0,

s2 = λ2q2

c2(q2 − s1r2)
− q2,

where P(s1) is a second-degree polynomial defined by (6.2). Notice that

P(0) = q1q2

(
c1 − λ1

q1
− r2

(
c2 − λ2

q2

))
> 0,

which is positive thanks to the assumption (A2) (where μi = ci − λi/qi), and that

P(−q1) = −λ1(q1 + q2/r2)< 0.

We deduce that the two roots of P are real and that one of them, which we denote by sp
1,

satisfies −q1 < sp
1 < 0 and then sp

1 /∈D1. We have that sp
1 is a (simple) pole of F1 if and only

if ψ1
(
sp

1, S+
2

(
sp

1

))= 0, i.e. ψ1
(
x2, S±

2 (x2)
)
< 0; see Figure 8 for a geometric representation.

We now show that the second root of P, denoted by s̃p
1, is not a pole of F1. Firstly, this is

clearly the case when s̃p
1 > 0. Secondly, s̃p

1 <−q1 < 0 is not a pole of F1, because we have
ψ1
(̃
sp

1, S−
2

(̃
sp

1

))= 0, but ψ1
(̃
sp

1, S+
2

(̃
sp

1

)) �= 0; see Figure 8 for a geometric representation. �
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FIGURE 8. The curveψ1(s1, s2) = 0 and its intersections with the curveψ(s1, s2) = 0 are shown in green.

In this case, ψ1

(
x2, S±

2 (x2)
)
> 0, and then sp

1 is not a pole of F1.

Our next result establishes the rate of decay of p2(u, 0) = 1 − p1(u, 0). It is noted that the
analogous result holds true for p1(0, v) as v → ∞.

Proposition 6.1 (Asymptotics of domination). The asymptotic behaviour of p1(u, 0) as u → ∞
is given by

1 − p1(u, 0) ∼ C

⎧⎪⎪⎨⎪⎪⎩
eusp

1 if ψ1
(
x2, S±

2 (x2)
)
< 0,

u− 3
2 eux2 if ψ1

(
x2, S±

2 (x2)
)
> 0,

u− 1
2 eux2 if ψ1

(
x2, S±

2 (x2)
)= 0,

for some constant C which depends on the case, where sp
1 is defined in Lemma 6.5.

Proof. The asymptotics of a function derives from the largest singularity of its Laplace
transform; see for example [9, Theorem 37.1]. Assume that f (u) is a function, L(s) is its Laplace
transform, and a is the largest singularity of order k (i.e. in the neighbourhood of a the Laplace
transform F behaves as (s − a)−k up to additive and multiplicative constants). Then apply the
theorems stating that f (u) is equivalent to uk−1eau up to a constant as u → ∞.

The Laplace transform of interest is 1/s1 − F1(s1). By Lemma 6.5 the point 0 is not a
singularity, whereas sp

1 is a simple pole and the largest singularity of F1 if ψ1
(
x2, S±

2 (x2)
)
< 0.

In that case the asymptotics is given by Ceusp
1 for some constant C. When ψ1

(
x2, S±

2 (x2)
)
� 0,

the largest singularity is the branch point x2. Thanks to the definition of S+
2 and the analytic

continuation formula (6.1) we obtain for some constants Ci that

F1(s1) =
s1→x2

⎧⎪⎪⎨⎪⎪⎩
C1 + C2

√
s1 − x2 + O(s1 − x2) if ψ1

(
x2, S±

2 (x2)
)
> 0,

C3√
s1 − x2

+ O(1) if ψ1
(
x2, S±

2 (x2)
)= 0.

The result now follows. �
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FIGURE 9. The conformal gluing function w is one-to-one from D1 to C \ [−1, 1].

6.3. Boundary value problem and its solution

We are now ready to establish a BVP satisfied by f1 defined in (5.8). It is a Carleman
homogeneous BVP which relies on the domain D1 and the boundary C1.

Proposition 6.2 (BVP). The function f1 satisfies the following Carleman BVP:

(i) f1(s1) is analytic on D1;

(ii) lims1→∞ f1(s1) = F0

F̃0

r2

q2
− F1(q2/r2);

(iii) f1 satisfies the boundary condition

f1(s1) = G(s1)f1(s1), ∀ s1 ∈ C1,

where

G(s1) := ψ1

ψ2

(
s1, S+

2 (s1)
)ψ2

ψ1

(
s1, S+

2 (s1)
)
. (6.3)

Proof. Item (i) directly derives from Lemma 6.4 and Lemma 6.5. Item (ii) comes from
the fact that the Laplace transform F1 converges to 0 at infinity. Item (iii) comes from the
kernel equation (5.7). For s1 ∈ C1, we have s1 ∈ C1 and S+

2 (s1) = S+
2 (s1). We evaluate (5.7) at(

s1, S+
2 (s1)

)
and

(
s1, S+

2 (s1)
)

and obtain the two equations{
0 =ψ1

(
s1, S+

2 (s1)
)
f1(s1) +ψ2

(
s1, S+

2 (s1)
)
f2
(
S+

2 (s1)
)
,

0 =ψ1
(
s1, S+

2 (s1)
)
f1(s1) +ψ2

(
s1, S+

2 (s1)
)
f2
(
S+

2 (s1)
)
.

Eliminating f2
(
S+

2 (s1)
)

from these equations gives the boundary condition (iii). �
To solve the BVP on D1 we need to introduce a conformal function which glues together

the upper part and the lower part of the circle C1. This gluing function is a simple rational
function and derives from the kernel. See Figure 9 to visualize the gluing function.

Lemma 6.6 (Conformal gluing function). The function

w(s1) := 1

2

(
s1 + q1√
λ1q1/c1

+
√
λ1q1/c1

s1 + q1

)
(6.4)
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FIGURE 10. Plot of ψ1
ψ2

(
s1, S+

2 (s1)
)

when s1 lies on C1. Left: q2/r2 ∈D1 and χ = 1; right: q2/r2 /∈D1

and χ = 0.

satisfies the following properties:

(i) w is holomorphic in D1 and continuous on D1;

(ii) w is one-to-one from D1 to C \ [−1, 1];

(iii) w satisfies the boundary property

w(s1) = w(s1), ∀ s1 ∈ C1.

Proof. Recall that s1 ∈ C1 if and only if |s1 + q1|2 = λ1q1
c1

. The three items are derived by
means of straightforward calculus. �

We write C−
1 (resp. C+

1 ) for the half-circle defined by the intersection of C1 and the half-plane
of negative (resp. positive) imaginary part; see Figure 9. The circle C1 and the half-circles C±

1
are oriented counterclockwise.

To solve the BVP we need to compute the index, which is defined by

χ := 1

2π
[ arg G(s1)]C−

1
= 1

2π

[
arg

ψ1

ψ2

(
s1, S+

2 (s1)
)]

C1

.

The index represents the variation of the argument of G(s1) when s1 lies on the half-circle C−
1 ,

that is, the difference between initial and the final value when the argument varies continu-
ously along the half-circle. The second equality comes from the definition of G in (6.3). Thus,
equivalently, it is also the variation of the argument of ψ1/ψ2 around the circle C1.

Lemma 6.7 (Index). The index χ is given by

χ =
⎧⎨⎩0 if q2/r2 �−q1 + √

λ1q1/c1 ⇔ f1 has no zeros in D1,

1 if q2/r2 >−q1 + √
λ1q1/c1 ⇔ f1 has one zero (q2/r2) in D1.

(6.5)

Proof. Consider the curve ψ1
ψ2

(
s1, S+

2 (s1)
)

when s1 lies on C1. This curve is numerically

plotted in Figure 10 in both cases of interest. Let us denote by A = ψ1
ψ2

(−q1 − √
λ1q1/c1, y4

)
and B = ψ1

ψ2

(−q1 + √
λ1q1/c1, y3

)
the image under ψ1

ψ2
of the two real points of C1. Analysis

of the equation defining this curve shows also that there is another double real point, which we
denote by C.

We can show that A and C are always positive. On the other hand B< 0 if and only if
q2/r2 >−q1 + √

λ1q1/c1. The last property comes from the fact that the line s1 = q2/r2 is the
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asymptote of the hyperbola ψ1(s1, s2) = 0, and the position of the point
(−q1 + √

λ1q1/c1, y3
)

with respect to this asymptote determines the sign of B. Now we see that when q2/r2 >−q1 +√
λ1q1/c1, the curve of interest makes a positive turn around the origin, i.e. χ = 1. In the other

case, B> 0 and the curve makes no turns around the origin, i.e. χ = 0.
Alternatively, one may start by noticing that by the boundary condition of

Proposition 6.2,

χ = 1

2π

[
arg

f1(s1)

f1(s1)

]
C−

1

= −1

2π

[
arg f1(s1)

]
C1

= ZD1 (f1) − PD1 (f1),

where ZD1 (f1) is the number of zeros (counted with multiplicity) of the meromorphic function
f1 in D1 ∪ {∞} and PD1 (f1) is the number of poles (counted with multiplicity) of f1 in D1 ∪
{∞}. By Lemma 6.5, the function f1 has no poles in D1 ∪ {∞}, so that χ � 0; it then remains
to analyse the zeros of f1, remembering that f1(q2/r2) = 0. �

We are now ready to present an explicit integral expression for F1. The analogous result
holds for F2, and thus we obtain an explicit expression for F via the kernel equation. Recall
that G is defined in (6.3), w in (6.4), F0 in (5.5), and F̃0 in (5.8), and that χ is given in (6.5).

Theorem 6.1 (Explicit expression for F1). The Laplace transform F1 is given by

F1(s1) = F0

F̃0

1

s1
+
(

F0

F̃0

r2

q2
− F1(q2/r2)

)
(X(s1) − 1) , ∀ s1 ∈D1, (6.6)

where

X(s1) :=
(

w(s1) − w(q2/r2)

w(s1) − 1

)χ
exp

(
1

2iπ

∫
C−

1

log (G(t))
w′(t)

w(t) − w(s1)
dt

)
(6.7)

and

F1(q2/r2) = F0

F̃0

r2

q2
+ F0

X(x0)

(
1

F̃0

(
1

x0
− r2

q2

)
+ 1

ψ1(x0, 0)

)
.

Let us provide some comments. Firstly, the given expression is valid for real s1 larger than√
λ1q1/c1 − q1 > 0. Secondly, we may replace the integral on the half-circle of log G by the

integral on the whole circle of log ψ1
ψ2

, since∫
C−

1

log (G(t))
w′(t)

w(t) − w(s1)
dt =

∫
C1

log

(
ψ1

ψ2

(
t, S+

2 (t)
)) w′(t)

w(t) − w(s1)
dt.

This theorem establishes the existence of the unique solution of the kernel equation under
the limit conditions found in Theorem 3.1. The uniqueness derives from the solution of the
BVP and the value of the index. The same remark can be made about Theorem 7.1.

Proof of Theorem 6.1. To solve the Carleman BVP of Proposition 6.2 we are going to
transform it into a Riemann BVP using the conformal gluing function w. See, for example,
[11, Section 5.2] for a brief presentation of the main results of BVP theory. We consider the
function

f̃1(x) := (x − w(q2/r2))−χ f1 ◦ w−1(x).
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According to Proposition 6.2, Lemma 6.6, and the fact that f1(q2/r2) = 0, we have the
following:

(i) f̃1 is analytic on C \ [−1, 1];

(ii) f̃1(x) ∼∞ x−χ
(

F0
F̃0

r2
q2

− F1(q2/r2)
)

;

(iii) f̃1 has left limits f̃ +
1 and right limits f̃ −

1 on [−1, 1] which satisfy the boundary condition

f̃ +
1 (x) = G̃(x)̃f −

1 (x)

with G̃(x) := G
((

w−1
)−(x)

)
, where we denote by

(
w−1

)− the right limit on [−1, 1] of
w−1; see Figure 9.

The function

X̃(x) := (x − 1)−χ exp

(
1

2iπ

∫ 1

−1

log G̃(u)

u − x
du

)
, ∀ x /∈C \ [0, 1],

satisfies the homogeneous problem

X̃+(x) = G̃(x)X̃−(x), ∀ x ∈ [0, 1],

where we write X̃+ (resp. X̃−) for the right (resp. left) limit of X̃ on [−1, 1]. This is a classical
result of BVP theory stemming from the Sokhotsky–Plemelj formulas; see [11, (5.2.24) and
Theorem 5.2.3]. We deduce from (iii) that

f̃ +
1

X̃+ (x) = f̃ −
1

X̃− (x), ∀ x ∈ [0, 1].

From (i) it follows that f̃1
X̃

is analytic on the whole of C. Thanks to (ii) and to the fact that

X̃(x) ∼∞ x−χ (by Lemma 6.7 and since the integral in the exponential goes to 0 when x goes to

infinity), we find that the analytic function f̃1
X̃

converges to F0
F̃0

r2
q2

− F1(q2/r2) at infinity. Thus
it coincides with this constant, and so

f1(s1) =
(

F0

F̃0

r2

q2
− F1(q2/r2)

)
(w(s1) − w(q2/r2))χ X̃(w(s1)) =

=
(

F0

F̃0

r2

q2
− F1(q2/r2)

)
X(s1),

where the last equality follows by the change of variable u = w(t). Now (6.6) follows from the
definition of f1 in (5.8).

We now compute the constant F1(q2/r2). Equation (5.6) gives

F1(x0) − F1(q2/r2) = − F0

ψ1(x0, 0)
,

whereas (6.6) implies that

F1(x0) − F1(q2/r2) = F0

F̃0

(
1

x0
− r2

q2

)
+
(

F0

F̃0

r2

q2
− F1(q2/r2)

)
X(x0),

which readily yields the stated expression for F1(q2/r2). �
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We conclude by providing an expression for the probability of total domination when
starting from the origin.

Corollary 6.1. The probability of total domination when starting from the origin is given by

p1(0, 0) = F0

F̃0
−
(

F0

F̃0

r2

q2
− F1(q2/r2)

) √
λ1q1/c1

iπ

∫
C−

1

log (G(t))w′(t)dt. (6.8)

Proof. We deduce from Theorem 6.1 that

p1(0, 0) = lim
s1→∞ s1F1(s1) = F0

F̃0
+
(

F0

F̃0

r2

q2
− F1(q2/r2)

)
lim

s1→∞ s1(X(s1) − 1).

Let us notice that when s1 → ∞, the integral in the exponential of (6.7) is equivalent to C/s1,
where

C := −
√
λ1q1/c1

iπ

∫
C−

1

log (G(t))w′(t)dt.

From the Taylor expansion of X we obtain X(s1) = 1 + C/s1 + o(1/s1), and the result
follows. �

7. Explicit solution for the Brownian model

In this section we solve the kernel equation (5.11) for the correlated Brownian model. We
obtain an explicit integral expression for F1 and the probability p1(0, 0) in Theorem 7.1. The
asymptotics of p1(u, 0), u → ∞, is given in Proposition 7.1. We follow the same steps as in the
Poissonian model studied in Section 6; consequently, some details will be omitted. Importantly,
the kernel ψ is similar to the one studied in [2, 14], and so its various properties can be taken
from there.

Without stating it explicitly, we assume in the following that our parameters satisfy the con-
ditions of Proposition 5.2. In particular, the correlation is non-negative: ρ ∈ [0, 1). We stress,
however, that the main parts of the following analysis can be carried out also for ρ < 0, and so
the remaining hurdle is to show that the same kernel equation holds in this case as well.

7.1. Study of the kernel

Again consider the kernel in (5.11), and define the bi-valued functions S1 and S2 such that

ψ(S1(s2), s2) = 0 and ψ(s1, S2(s1)) = 0.

A direct calculation yields the branches⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
S±

1 (s2) =
−(ρσ1σ2s2 +μ1

)±√s2
2σ

2
1 σ

2
2

(
ρ2 − 1

)+ 2s2σ1(μ1ρσ2 −μ2σ1) +μ2
1

σ 2
1

,

S±
2 (s1) =

−(ρσ1σ2s1 +μ2
)±√s2

1σ
2
1 σ

2
2

(
ρ2 − 1

)+ 2s1σ2(μ2ρσ1 −μ1σ2) +μ2
2

σ 2
2

.
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FIGURE 11. The set {(s1, s2) ∈R
2 :ψ(s1, s2) = 0} is an ellipse divided in two parts: the function S−

2 (in
blue) and the function S+

2 (in red). The two lines are the sets defined by ψ1 = 0 and ψ2 = 0. The branch
points x± and y± are in black, the points x0 and y0 in green, and the pole sp

1 in orange.

The respective branch points of S1 and S2 are⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
y± = μ1ρσ1σ2 −μ2σ

2
1 ±

√(
μ1ρσ1σ2 −μ2σ

2
1

)2 +μ2
1σ

2
1 σ

2
2

(
1 − ρ2

)
σ 2

1 σ
2
2

(
1 − ρ2

) ,

x± = μ2ρσ1σ2 −μ1σ
2
2 ±

√(
μ2ρσ1σ2 −μ1σ

2
2

)2 +μ2
2σ

2
1 σ

2
2

(
1 − ρ2

)
σ 2

1 σ
2
2

(
1 − ρ2

) .

The functions S±
1 (resp. S±

2 ) are analytic on the cut plane C \ ((−∞, y−] ∪ [y+,∞)) (resp.
C \ ((−∞, x−] ∪ [x+,∞))). See Figure 11 to visualize S±

2 on [x−, x+].
Recall the definition of x0, y0 in (5.13). Furthermore, we define sp

1 as the first coordinate of
the other intersection between the ellipse ψ = 0 and the line ψ1 = 0. Symmetrically we define
sp

2. We have

sp
1 := − 2(r2|μ2| − |μ1|)

σ 2
1 + σ 2

2 r2
2 − 2ρσ1σ2r2

< 0 and sp
2 := − 2(r1|μ1| − |μ2|)

σ 2
2 + σ 2

1 r2
1 − 2ρσ1σ2r1

< 0. (7.1)

See Figure 11 for a geometric interpretation of x0, y0, and sp
1.

We now define the curve

H1 := S±
1 ([y+,∞)) = {s1 ∈C :ψ(s1, s2) = 0 and s2 ∈ [y+,∞)}.

This curve is the boundary of the BVP established in Section 7.3.

Lemma 7.1 (The hyperbola H1). The curve H1 is a branch of a hyperbola that is symmetrical
with respect to the horizontal axis, whose equation is

σ 2
1 σ

2
2

(
ρ2 − 1

)
x2 + ρ2σ 2

1 σ
2
2 y2 − 2

(
σ 2

2μ1 − ρσ1σ2μ2
)
x =μ1

(
σ 2

2μ1 − 2ρσ1σ2μ2
)
/σ 2

1 .

The curve H1 is the right branch of the hyperbola if ρ < 0, the left branch if ρ > 0, and a
straight line when ρ = 0; see Figure 12.
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(a) (b) (c)

FIGURE 12. Complex plane of the s1 variable, with the hyperbola H1 and the domain G1 in green.

Proof. See [14, Lemma 4] or [2, Lemma 9] which study a similar kernel and derive the
equation of the hyperbola. �

We denote by H−
1 the part of H1 with negative imaginary part. Finally we define the domain

G1 which is bounded by H1 and contains x+ (and not x−); see Figure 12.

7.2. Asymptotic results

Similarly to Section 6.2, we meromorphically continue f1 and study its poles in order to
compute the asymptotics of p1(u, 0) and p1(0, v) when u → ∞ and v → ∞.

Lemma 7.2 (Analytic continuation). The function F1(s1) can be meromorphically extended to
the set {

s1 ∈C : �s1 > 0 or �S+
2 (s1)> 0

}
(7.2)

thanks to the formula

F1(s1) = −ψ2
(
s1, S+

2 (s1)
)
F2
(
S+

2 (s1)
)− cp1(0, 0)

ψ1
(
s1, S+

2 (s1)
) . (7.3)

The domain G1 is included in the set defined in (7.2), and F1 is therefore meromorphic on G1.

Proof. The proof follows the same steps as the proof of Lemma 6.3 and Lemma 6.4. See
also [14, Lemma 5] to show the inclusion of G1 in the set defined in (7.2). �
Lemma 7.3 (Poles of F1). F1 has one or two poles in the set defined in (7.2):

• 0 is always a simple pole of F1;

• sp
1 is a simple pole of F1 if and only if ψ1

(
x−, S±

2 (x−)
)
< 0, where sp

1 is defined in (7.1).

F2 has a unique simple pole, which is sp
2, if ψ2

(
S±

1 (y−), y−)< 0; it has no poles otherwise.

Proof. The proof follows the same steps as the proof of Lemma 6.5 (but is simpler). The
poles come from the zeros of the denominator of the continuation formula (7.3), that is, the
zeros of ψ1

(
s1, S+

2 (s1)
)
. It is the intersection between a line and an ellipse; see Figure 11. �
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Proposition 7.1 (Asymptotics of domination). The asymptotic behaviour of 1 − p1(u, 0) as
u → ∞ is given by

1 − p1(u, 0) ∼ C

⎧⎪⎪⎪⎨⎪⎪⎪⎩
eusp

1 if ψ1
(
x−, S±

2 (x−)
)
< 0,

u− 3
2 eux−

if ψ1
(
x−, S±

2 (x−)
)
> 0,

u− 1
2 eux−

if ψ1
(
x−, S±

2 (x−)
)= 0,

for some constant C which depends on the case, where sp
1 is defined in (7.1).

Proof. The singularities (poles and branch points) of F1 are known from Lemma 7.3 and
Equation (7.3). The asymptotics derives from standard transfer theorems as in the proof of
Lemma 6.1. �

7.3. Boundary value problem and its solution

We state a homogeneous Carleman BVP satisfied by the function f1 defined in (5.17).

Proposition 7.2 (BVP). The function f1 satisfies the following Carleman BVP:

(i) f1(s1) is analytic on G1;

(ii) lims1→∞ f1(s1) = 0;

(iii) f1 satisfies the boundary condition on the hyperbola

f1(s1) = G(s1)f1(s1), ∀ s1 ∈H1,

where

G(s1) := ψ1

ψ2

(
s1, S+

2 (s1)
)ψ2

ψ1

(
s1, S+

2 (s1)
)
. (7.4)

Proof. The proof follows the same steps as that of Proposition 6.2. �
Following [13, 14] we are going to define the conformal gluing function which glues

together the upper part of the hyperbola and its lower part. To that end we define for a � 0
the generalized Chebyshev polynomial for x ∈C \ (−∞,−1] by

Ta(x) := cos (a arccos (x)) = 1

2

((
x +
√

x2 − 1
)a +

(
x −
√

x2 − 1
)a)

.

Let us also define the angle of the model

β := arccos (−ρ).

Lemma 7.4 (Conformal gluing function). The function

W(s1) := T π
β

(
2s1 − (x+ + x−)

x+ − x−

)
(7.5)

satisfies the following properties:

(i) W is holomorphic in G1 and continuous on G1;

(ii) W is injective in G1;
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(iii) W satisfies the boundary property

W(s1) = W(s1), ∀ s1 ∈H1.

Proof. This function has already been studied in several papers. See, for example,
[13, Lemma 3.4] and also [12, Figure 3] in the case of symmetric conditions. �

To state the main theorem of this section we define

κ1 :=
{

1 if 0> S±
1 (y+),

0 if 0 � S±
1 (y+),

and κ2 :=
{

1 if ψ1
(
x−, S±

2 (x−)
)
< 0 and sp

1 > S±
1 (y+),

0 otherwise.

Using Lemma 7.3 we note that κ1 is defined so that κ1 = 1 when the pole 0 of F1 is in G1, and
κ1 = 0 otherwise. In the same way κ2 = 1 when sp

1 is a pole and is in G1, and κ2 = 0 otherwise.
Let us recall that W is defined in (7.5), G in (7.4), H−

1 in Lemma 7.1, and c in (5.12).

Theorem 7.1 (Explicit expression for F1). The Laplace transform F1 is given by

F1(s1) = p1(0, 0)

(
1

s1
+ CX(s1)

)
, s1 ∈ G1, (7.6)

where

X(s1) :=
(

1

W(s1) − W(0)

)κ1
(

1

W(s1) − W
(
sp

1

))κ2

× exp

(
1

2iπ

∫
H−

1

log (G(t))
W ′(t)

W(t) − W(s1)
dt

)
, (7.7)

C := − 1

X(x0)

(
1

x0
+ c

ψ1(x0, 0)

)
. (7.8)

Furthermore, p1(0, 0) is given by Corollary 5.1 for ρ = 0, whereas for ρ ∈ (0, 1
2
σ2μ1
σ1μ2

)
we have

p1(0, 0) =
1
2σ

2
2

(
r2 −μ1/μ2

)
ψ2
(
S+

1 (y0), y0
)

c(ψ2
(
S+

1 (y0), y0
)−ψ2(0, y0)) −ψ2(0, y0)ψ1

(
S+

1 (y0), y0
) (

1/S+
1 (y0) + CX

(
S+

1 (y0)
)) ,

(7.9)

and for ρ ∈ [ 1
2
σ2μ1
σ1μ2

, 1
)

we have

p1(0, 0) = 1

1 + C lims1→0 s1X(s1)
, (7.10)

where

lim
s1→0

s1X(s1) = 1

W ′(0)

(
1

W(0) − W
(
sp

1

))κ2

× exp

(
1

2iπ

∫
H−

1

log (G(t))
W ′(t)

W(t) − W(0)
dt

)
. (7.11)
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Proof. The proof follows the same steps as that of Theorem 6.1 and also that of
[14, Theorem 1]. Solving the BVP of Proposition 7.2 in a standard way, we find that there
exists a constant C’ such that

F1(s1) = p1(0, 0)

s1
+ C′X(s1).

We now compute the value of C’. Taking the limit of the kernel equation in (x0, 0) (as in the
proof of Lemma 5.1), we obtain that

0 =ψ1(x0, 0)F1(x0) + cp1(0, 0).

Combining this equation with the fact that

F1(x0) = p1(0, 0)

x0
+ C′X(x0),

we deduce that C′ = Cp1(0, 0), where C is defined in (7.8), and we obtain (7.6).
It remains to find p1(0, 0) in the case ρ ∈ (0, 1). First, it is important to note that S+

1 (y0) ∈
G1 ∩ [0,∞). The positivity is easy to see because

S+
1 (y0) = 2μ2ρσ1/σ2 −μ1 +√(2μ2ρσ1/σ2 −μ1)2

σ 2
1

� 0,

and S+
1 (y0) ∈ G1, because

S+
1 (y0) − S+

1 (y+) = ρσ1σ2(y+ − y0) +√(μ1 − 2μ2ρσ1/σ2)2

σ 2
1

� 0

as y+ − y0 � 0. We see that S+
1 (y0) = 0 if and only if ρ � 1

2
σ2μ1
σ1μ2

.

First assume that S+
1 (y0) = 0. We obtain with (7.6)

1 = lim
s1→0

s1F1(s1) = p1(0, 0)

(
1 + C lim

s1→0
s1X(s1)

)
,

which gives (7.10). In this case κ1 = 1 and we obtain (7.11).
Assume now that S+

1 (y0)> 0. As in the proof of Corollary 5.1 we evaluate the kernel equa-
tion at (0+, y0). We get the same (5.15), even though initially the term ρσ1σ2 appears on both
sides. The second equation is obtained by using the point

(
S+

1 (y0), y0
)
:

0 =ψ1
(
S+

1 (y0), y0
)
F1
(
S+

1 (y0)
)+ψ2

(
S+

1 (y0), y0
)
F2(y0) + cp1(0, 0).

The third equation we need is (7.6) with s1 = S+
1 (y0):

F1
(
S+

1 (y0)
)= p1(0, 0)

(
1

S+
1 (y0)

+ CX
(
S+

1 (y0)
))

.

Solving these three linear equations with the three unknowns p1(0, 0), F2(y0), and
F1
(
S+

1 (y0)
)
, we obtain (7.9). �
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(a) (b)

FIGURE 13. The values of p1(0, 0) computed using contour integrals in green (see (6.8) and (7.9)) and
Monte Carlo simulations in red for a range of r2 > 0.5.

8. Numerical illustrations

This section provides numerical illustrations of some of our basic formulas. That is, we
consider p1(0, 0), the probability of domination by the first component when starting at the
origin, for both (i) the Poisson model (see (6.8)) and (ii) the Brownian model (see (7.9)). The
computations were performed using Mathematica and the R programming language. It must be
mentioned that numerical evaluation of the contour integrals involved is not a straightforward
task, and a certain care should be taken with the branches of the complex logarithm and the
square root.

Figure 13 presents plots of p1(0, 0) (in green) as a function of the reflection parameter
r2 > 0.5. For both models we take r1 = 2.5 and X1(1), X2(1) with unit variances and the means
μ1 = −1,μ2 = −2. More precisely, in the Poisson model we take c1 = c2 = 1, λ1 = 8, λ2 = 18,
q1 = 4, q2 = 6. In the Brownian model we take correlation ρ = 0.2. It must be mentioned that
we use (7.9) and not (7.10), since ρ < 1/4. Furthermore, the rates in the Poisson model are
rather high, which suggest that the respective uncorrelated Brownian approximation should be
close; see Section 4.3. In fact, the corresponding curve drawn based on the explicit expression
in (5.14) almost coincides with the green curve in Figure 13(a).

In order to check our numerical results, we also perform a Monte Carlo simulation (red
dots). It should be stressed that our simulation involves various sources of errors. Firstly, a
single run is terminated when Y1 > 100 and Y2/Y1 < 0.1 (at the time of a jump) or the analo-
gous condition is satisfied with the indices swapped. In the first/second case we assume that
the first/second component dominates. The Poisson simulation is otherwise exact, whereas the
Brownian model is discretized with time-step 0.01, so that we reflect a random walk with
the corresponding normal increments. In this regard, it is noted that an approximation result
similar to that in Section 4 can also be established for random walks. Finally, each value
is obtained from 10,000 independent realizations, and thus the 95% asymptotic confidence
interval corresponds to ±0.02

√
p1(1 − p1).
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Appendix A. Derivation of the kernel equation for the Poisson model with
common jumps

Proof of Proposition 5.3. For the sake of brevity, here we consider only the case when
r1σ1 >σ2 and r2σ2 >σ1; the derivation of the kernel equations for other cases is similar (the
cases with equalities should be considered separately or treated by approximation).

Let A denote the event that the first coordinate dominates the second one. Obviously, for
any u, v> 0 and h> 0 we have

p1(u, v) = P(u,v)(A) = P(u,v)(A ∩ {X makes at most one jump on [0,h]})
+ P(u,v)(A ∩ {X makes at least two jumps on [0,h]}).

It is easy to see that the second term is O(h2) = o(h) as h → 0+, uniformly in (u,v).
Now fix arbitrary u, v> 0. Using the Markov property and considering all possible cases

with at most one jump on the time interval [0,h], we obtain

p1(u, v) = (1 − λh)
(
1 − λ1h

)(
1 − λ2h

)
p1(u + c1h, v + c2h)

+ λh
(
1 − λ1h

)(
1 − λ2h

) (q1u)∧(q2v)∫
0

dx p1
(
u − x/q1, v − x/q2

) · e−x

+ λh
(
1 − λ1h

)(
1 − λ2h

) q1u∫
q2v

dx p1
(
u − x/q1 + r2

(
x/q2 − v

)
, 0
) · e−x · 1I

{
q1u> q2v

}

+ λh
(
1 − λ1h

)(
1 − λ2h

) q2v∫
q1u

dx p1
(
0, v − x/q2 + r1

(
x/q1 − u

)) · e−x · 1I
{
q2v> q1u

}

+ λh
(
1 − λ1h

)(
1 − λ2h

) ∞∫
q1u

dx p1
(
u − x/q1 + r2

(
x/q2 − v

)
, 0
) · e−x

× 1I
{
r1u − v>

(
r1/q1 − 1/q2

)
x, q1u> q2v

}
+ λh

(
1 − λ1h

)(
1 − λ2h

) ∞∫
q2v

dx p1
(
0, v − x/q2 + r1

(
x/q1 − u

)) · e−x

× 1I
{
r2v − u>

(
r2/q2 − 1/q1

)
x, q2v> q1u

}
+ λh

(
1 − λ1h

)(
1 − λ2h

) ∞∫
q1u

dx p1(0, 0) · e−x·1I{(r1/q1 − 1/q2
)
x � r1u − v, q1u> q2v

}

+ λh
(
1 − λ1h

)(
1 − λ2h

) ∞∫
q2v

dx p1(0, 0) · e−x·1I{(r2/q2 − 1/q1
)
x � r2v − u, q2v> q1u

}

+ λ1h(1 − λh)
(
1 − λ2h

) q1u∫
0

dx p1(u − x/q1, v) · e−x
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+ λ1h(1 − λh)
(
1 − λ2h

) ∞∫
q1u

dx p1(0, v + r1(x/q1 − u)) · e−x

+ λ2h
(
1 − λ1h

)
(1 − λh)

q2v∫
0

dx p1(u, v − y/q2) · e−x

+ λ2h
(
1 − λ1h

)
(1 − λh)

∞∫
q2v

dx p1(u + r2(x/q2 − v), 0) · e−x

+ o(h), h → 0 + .

Multiplying both sides by e−s1u−s2v and integrating the result over [0,∞) × [0,∞) with
respect to the variables u and v, we obtain

∞∫
0

∞∫
0

p1(u, v) · e−s1u−s2vdudv = (1 − (λ+ λ1 + λ2)h)

∞∫
0

∞∫
0

p1(u + c1h, v + c2h) · e−s1u−s2vdudv

+λh(I1 + I2 + I3 + I4 + I5 + I6 + I7) + λ1h(I8 + I9) + λ2h(I10 + I11) + o(h), h → 0 + .

Noting that

∞∫
0

∞∫
0

p1(u, v) · e−s1u−s2vdudv − (1 − (λ+ λ1 + λ2)h)

∞∫
0

∞∫
0

p1(u + c1h, v + c2h) · e−s1u−s2vdudv

=
∞∫

c1h

∞∫
c2h

p1(u, v) · e−s1u−s2vdudv +
∞∫

c1h

c2h∫
0

p1(u, v) · e−s1u−s2vdudv

+
c1h∫
0

∞∫
c2h

p1(u, v) · e−s1u−s2vdudv +
c1h∫
0

c2h∫
0

p1(u, v) · e−s1u−s2vdudv

−es1c1h+s2c2h

∞∫
c1h

∞∫
c2h

p1(u, v) · e−s1u−s2vdudv

+(λ+ λ1 + λ2)hes1c1h+s2c2h

∞∫
c1h

∞∫
c2h

p1(u, v) · e−s1u−s2vdudv

= [(λ+ λ1 + λ2 − s1c1 − s2c2)F(s1, s2) + c2F1(s1) + c1F2(s2)] h + o(h),

we conclude that

(λ+ λ1 + λ2 − s1c1 − s2c2)F(s1, s2) + c2F1(s1) + c1F2(s2)

= λ(I1 + I2 + I3 + I4 + I5 + I6 + I7) + λ1(I8 + I9) + λ2(I10 + I11).
(A.1)

To compute Ii, i = 1, . . . , 11, we will repeatedly use Fubini’s theorem and suitable changes of
variables without mention.
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For I1 we have

I1 =
∞∫

0

du

∞∫
0

dv

(q1u)∧(q2v)∫
0

dx p1
(
u − x/q1, v − x/q2

) · e−x−s1u−s2v

=
∞∫

0

du

q1u/q2∫
0

dv

q2v∫
0

dx p1
(
u − x/q1, v − x/q2

) · e−x−s1u−s2v

+
∞∫

0

du

∞∫
q1u/q2

dv

q1u∫
0

dx p1
(
u − x/q1, v − x/q2

) · e−x−s1u−s2v =: I′
1 + I′′

1 .

However,

I′
1 =

∞∫
0

du

q1u/q2∫
0

dv

q2v∫
0

dx p1
(
u − x/q1, v − x/q2

) · e−x−s1u−s2v

= q2

∞∫
0

du

q1u/q2∫
0

dv

v∫
0

dz p1
(
u − q2(v − z)/q1, z

) · e−q2(v−z)−s1u−s2v

= q2

∞∫
0

dv

v∫
0

dz

∞∫
q2v/q1

du p1
(
u − q2(v − z)/q1, z

) · e−q2(v−z)−s1u−s2v

= q2

∞∫
0

dv

v∫
0

dz

∞∫
q2z/q1

dy p1(y, z) · e−q2(v−z)−s1(y+q2(v−z)/q1)−s2v

= q2

∞∫
0

dz

∞∫
q2z/q1

dy

∞∫
z

dv p1(y, z) · e−
(

1+s1/q1+s2/q2

)
q2v+

(
1+s1/q1

)
q2z−s1y

= 1

1 + s1/q1 + s2/q2

∞∫
0

dz

∞∫
q2z/q1

dy p1(y, z) · e−s1y−s2z.

Similarly, we have

I′′
1 = 1

1 + s1/q1 + s2/q2

∞∫
0

dz

q2z/q1∫
0

dy p1(y, z) · e−s1y−s2z,

and so

I1 = 1

1 + s1/q1 + s2/q2
· F(s1, s2).
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For I2 we have

I2 =
∞∫

0

du

∞∫
0

dv

q1u∫
q2v

dx p1
(
u − x/q1 + r2

(
x/q2 − v

)
, 0
) · e−x−s1u−s2v

=
∞∫

0

dv

∞∫
q2v

dx

∞∫
r2(x/q2−v)

dy p1(y, 0) · e−x−s2v−s1

(
y+x/q1−r2

(
x/q2−v

))

= q2

r2

∞∫
0

dv

∞∫
0

dz

∞∫
z

dy p1(y, 0) · e−(z+r2v)/
(

r2/q2

)
−s2v−s1

(
y+q2

(
z+r2v

)
/
(

r2q1

)
−z
)

= 1

r2
(
1 + s1/q1 + s2/q2

) ∞∫
0

dy p1(y, 0) · e−s1y ·
y∫

0

e−
(

q2/r2+s1q2/
(

r2q1

)
−s1

)
zdz

= 1/q2(
1 + s1/q1 + s2/q2

)(
1 + s1/q1 − s1r2/q2

) [F1(s1) − F1

(
1 + s1/q1

r2/q2

)]
,

and similarly

I3 = 1/q1(
1 + s1/q1 + s2/q2

)(
1 + s2/q2 − s2r1/q1

) [F2(s2) − F2

(
1 + s2/q2

r1/q1

)]
.

Also, we have

I4 =
∞∫

0

du

q1u/q2∫
0

dv

(r1u−v)/
(

r1/q1−1/q2

)∫
uq1

dx p1
(
u − x/q1 + r2

(
x/q2 − v

)
, 0
) · e−x−s1u−s2v

= 1

r2/q2 − 1/q1

∞∫
0

du

q1u/q2∫
0

dv

(r1r2−1)(q1u/q2−v)/(q1

(
r1/q1−1/q2

)
)∫

r2(q1u/q2−v)

dy p1(y, 0)

× e−(y−u+r2v)/
(

r2/q2−1/q1

)
−s1u−s2v

= 1

r2/q2 − 1/q1

∞∫
0

du

q1u/q2∫
0

dz

(r1r2−1)z/(q1

(
r1/q1−1/q2

)
)∫

r2z

dy p1(y, 0)

× e−(y−u+r2(q1u/q2−z))/
(

r2/q2−1/q1

)
−s1u−s2(q1u/q2−z)

= 1/q1(
r2/q2 − 1/q1

)(
1 + s1/q1 + s2/q2

) ∞∫
0

dz eq2(1−r2s1/q2+s1/q1)z/(q1(r2/q2−/q1))

×
(r1r2−1)z/(q1

(
r1/q1−1/q2

)
)∫

r2z

dy p1(y, 0) · e−y/
(

r2/q2−1/q1

)
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= 1/q1(
r2/q2 − 1/q1

)(
1 + s1/q1 + s2/q2

) ∞∫
0

dy p1(y, 0) · e−y/
(

r2/q2−1/q1

)

×
y/r2∫

q1

(
r1/q1−1/q2

)
y/(r1r2−1)

dz eq2(1−r2s1/q2+s1/q1)z/
(

q1

(
r2/q2−1/q1

))

= 1/q2

(1 − r2s1/q2 + s1/q1)
(
1 + s1/q1 + s2/q2

) [F1

(
1 + s1/q1

r2/q2

)

− F1

(
r1 + s1

(
r1/q1 − 1/q2

)
(r1r2 − 1)/q2

)]
,

and similarly

I5 = 1/q1(
1 − r1s2/q1 + s2/q2

)(
1 + s1/q1 + s2/q2

) [F2

(
1 + s2/q2

r1/q1

)

−F2

(
r2 + s2

(
r2/q2 − 1/q1

)
(r1r2 − 1)/q1

)]
.

Also, for I6 we have

I6 =
∞∫

0

du

q1u/q2∫
0

dv

∞∫
(r1u−v)/

(
r1/q1−1/q2

) dx e−x−s1u−s2v · p1(0, 0)

=
(
r1/q1 − 1/q2

)
/q2(

1 + s1/q1 + s2/q2
)(

r1 + s1
(
r1/q1 − 1/q2

)) · p1(0, 0),

and similarly

I7 =
(
r2/q2 − 1/q1

)
/q1(

1 + s1/q1 + s2/q2
)(

r2 + s1
(
r2/q2 − 1/q1

)) · p1(0, 0).

For I8 we have

I8 =
∞∫

0

du

∞∫
0

dv

q1u∫
0

dx p1(u − x/q1, v) · e−s1u−s2v−x

= 1

1 + s1/q1

∞∫
0

dy

∞∫
0

dv p1(y, v) · e−s1y−s2v = 1

1 + s1/q1
· F(s1, s2).

For I9 we have

I9 =
∞∫

0

du

∞∫
0

dv

∞∫
q1u

dx p1(0, v + r1(x/q1 − u)) · e−x−s1u−s2v

= 1

1 + s1/q1

∞∫
0

dy

∞∫
0

dv p1(0, v + r1y) · e−s2v−q1y
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= 1

r1(1 + s1/q1)

∞∫
0

dv

∞∫
v

dz p1(0, z) · e−s2v−q1(z−v)/r1

= 1/q1

(1 + s1/q1)(r1s2/q1 − 1)

[
F2(q1/r1) − F2(s2)

]
.

Similarly, we have

I10 = 1

1 + s2/q2
· F(s1, s2)

and

I11 = 1/q2

(1 + s2/q2)(r2s1/q2 − 1)

[
F1(q2/r2) − F1(s1)

]
.

Substituting the obtained values of Ii, i = 1, . . . , 11, into (A.1) and multiplying both sides
by −1 finishes the proof. �
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