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Abstract. We study the stationary reflected Brownian motion in a non-convex
wedge, which, compared to its convex analogue model, has been much rarely
analyzed in the probabilistic literature. We prove that its stationary distribu-
tion can be found by solving a two dimensional vector boundary value problem
(BVP) on a single curve for the associated Laplace transforms. The reduction
to this kind of vector BVP seems to be new in the literature. As a matter
of comparison, one single boundary condition is sufficient in the convex case.
When the parameters of the model (drift, reflection angles and covariance ma-
trix) are symmetric with respect to the bisector line of the cone, the model is
reducible to a standard reflected Brownian motion in a convex cone. Finally, we
construct a one-parameter family of distributions, which surprisingly provides,
for any wedge (convex or not), one particular example of stationary distribution
of a reflected Brownian motion.

Keywords: Obliquely reflected Brownian motion in a wedge; non-convex cone; sta-

tionary distribution; Laplace transform; boundary value problem

AMS Subject Classification: Primary 60J65, 60E10; Secondary 60H05

∗This project has received funding from two organizations: (1) the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
under the Grant Agreement No. 759702. (2) The ANR RESYST (ANR-22-CE40-0002).



738 G. Fayolle, S. Franceschi and K. Raschel

To the memory of Vadim Malyshev

On September 30, 2022, at the age of 85, Vadim Aleksandrovich Malyshev,
Editor-in-Chief of the journal MPRF, died suddenly. Vadim was an outstand-
ing Russian scientist in the field of probability and mathematical physics. His
memory will always remain in the hearts and minds of his colleagues. I [Guy
Fayolle] mourn the loss of the one who was my friend for 37 years.

1. Introduction

1.1. Context and motivations

Since the introduction of the reflected Brownian motion in the eighties [19,20,
36,39], the mathematical community has shown a constant interest in this topic.
Typical questions deal with the recurrence of the process, the absorption at the
corner of the wedge, the existence and computation of stationary distributions...
We refer for more details to the introduction of [17].

Generally speaking, an obliquely reflected Brownian motion in a two-dimen-
sional wedge of opening angle β ∈ (0, 2π) is defined by its drift µ ∈ R2 and
two reflection angles (δ, ε) ∈ (0, π)2, see Figures 1.4, 2.1 and 5.1 for a few
examples. The covariance matrix is taken to be the identity. A suitable linear
transform allows to reduce the whole range of parameter angles β ∈ (0, 2π)
to only three cases: the quarter plane (when β ∈ (0, π)), the three-quarter
plane (when β ∈ (π, 2π)) and the limiting half-plane case β = π. Doing so,
the covariance matrix is nolonger the identity but instead has the general form
(2.1). However, by a clear convexity argument, a linear transform cannot be
used to transform, for instance, the three-quarter plane into a quarter plane.

While the early articles [36,39] most dealt with the general case β ∈ (0, 2π)
(see also the more recent article [24]), the subcase of convex cones β ∈ (0, π] has
attracted much more attention [1,3,5–7,13,14,16,17,19,20]; we have identified
at least three reasons for that. First, one initial motivation was to approximate
queueing systems in a dense traffic regime [18], which are typically obtained from
random walks in the (convex) quarter plane. Second, the Laplace transform
turns out to be a very useful tool in these problems; to make this function
converge we need to have a convex cone. Finally, because there are already
several parameters defining reflected Brownian motion (drift, reflection angles
and opening angle), we feel that non-convex cones have sometimes been taken
away, in order to reduce the number of cases to consider: for instance, regarding
transience and recurrence criteria, only the convex case has been established
in [23], while close arguments should also cover the non-convex case.

In this article, our main objective is the study of recurrent reflected
Brownian motion in the non-convex case β ∈ (π, 2π): we shall intro-
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duce complex analysis techniques to characterize the Laplace trans-
form of the stationary distribution.

Let us present five motivations to the present work. Our first goal is to
complete the literature and to show how, in this more complicated non-convex
setting, one can solve the problem of finding the stationary distribution. Our
techniques could also be applied to the transient case, for example to analyse
Green functions or absorption probabilities (see [9, 15] for the convex case);
however, we do not tackle these problems here.

Our second motivation is provided by the discrete framework of random
walks (or queueing networks). Indeed, in the same way as in the quarter plane,
reflected Brownian motion has been introduced to study scaling limits of large
queueing networks (see Figure 1.1), a Brownian model in a non-convex cone
could approximate discrete random walks on a wedge having obtuse angle (see
Figure 1.2 for a concrete example). Such random walks have an independent
interest and have already been studied in a number of cases: see [2,8,31] in the
combinatorial literature and [28,35] for more probability inclined works.

Figure 1.1. Scaling limit of some queueing systems towards reflected Brownian
motion. Left picture: transition rates of a random walk (two coupled proces-
sors). Taking λi(n), νi(n) → 1

2 ,
√
n(λi − νi) → µi and ν∗i (n) → ri+1

2 , the
discrete process converges to the reflected Brownian motion with parameters
described as on the right picture (with identity covariance matrix). See [32] for
the original proof.

Our third motivation is to develop an analytic method, which turns out
to be particularly useful in a number of contexts. This method was invented
by Fayolle, Iasnogorodski and Malyshev in the seventies, see [10, 11, 26]; at
that time, the principal motivation was to study the stationary distribution
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Figure 1.2. For the exact same reasons as for Figure 1.1, in the three-quarter
plane, the discrete model on the left picture converges to the reflected Brownian
motion on the right display.

of ergodic reflected random walks in a quadrant. The main idea is to state
a functional equation satisfied by the associated generating functions and to
reduce it to certain boundary value problems, which after analysis happen to
be solvable in closed form. This approach has been applied to the framework of
Brownian diffusions in a quadrant [1, 13, 14], to symmetric random walks in a
three-quarter plane [31,35], but never to the present setting of diffusions in non-
convex wedges. From this technical point of view, the present work will bring
the following novelty: we will prove that our problem is generically reducible
to a system of two boundary value problems (as a matter of comparison, only
one single boundary value problem is needed in the convex case [17]). This
formally leads to a matrix power series for the Laplace transform, as a solution
of a Fredholm integral equation, see (4.25).

Next, we aim at initiating the study of piecewise inhomogeneous Brownian
models in cones of Rd. To take a concrete example, consider a half-plane and
view it as the union of two quarter planes glued along one half-axis (see Figure
1.3, leftmost picture). Then the process behaves as follows: in each quarter
plane, its evolution is governed by a Brownian motion (with possible different
drifts and covariance matrices); the process can pass from one quadrant to
the other one through the porous interface; on the remaining boundaries, it is
reflected in a standard way. Another example would consist in dividing the
plane into two half-planes, as on Figure 1.3, left. This model may be viewed
as a two-dimensional generalization of the so-called bang-bang process on R, as
studied in [34].
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Figure 1.3. Different models of (non-)reflected inhomogeneous Brownian mo-
tions in various cones of R2. Blue arrows represent drift vectors and red arrows
stand for the reflection vectors on the boundary axes. In the second picture,
when the two drifts are opposite, the vertical component is called a bang-bang
Brownian motion.

Piecewise inhomogeneous Brownian motions are related to our obtuse angle
model as follows: splitting the three-quarter plane into two convex wedges (see
the right display on Figure 1.3, or Figure 3.1) and performing simple linear
transformations, our model turns out to be equivalent to the inhomogeneous
domain described above.

These inhomogeneous models are reminiscent from a well-known model in
queuing theory, known as the JSQ (for “join the shortest queue”) model, see [11,
Chap. 10] or [25]. In this model, the quarter plane is divided into two octants
(π/8-wedges) and the random walk obeys to different (very specific rules) ac-
cording to the octant. See the rightmost picture on Figure 1.3. The techniques
developed in this paper offer a potential approach to solve this (asymmetric)
Brownian JSQ model.

Our fifth and final motivation is to provide tools leading to a comparative
study of reflected Brownian motion in convex and non-convex cones. Does this
model admit a kind of phase transition around the critical angle β = π? Some
results in our paper tend to show that this is the case: while reflected Brownian
motion in a convex cone may be studied with one single boundary value problem,
two analogue problems are needed in the non-convex case. On the other hand,
we also bring some evidence that the model has a smooth behavior at β = π:
we are able to construct a one-parameter family of stationary distributions,
whose formula is valid for any β ∈ (0, 2π) and, surprisingly, is independent of
β! While we will leave the question of phase transition as an open problem, let
us conclude with the expression of the density (written in polar coordinates) of
this remarkable family:

π(r, t) =
C√
r

cos
( t

2

)
e−2r|µ| cos2( t

2 ), |t| 6 β

2
< π, (1.1)
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where |µ| stands for the norm of the drift and C is a normalization constant; see
Figure 1.4. The example (1.1) is obtained [3] in the convex case, it immediately
extends to the non-convex case.

Figure 1.4. Parameters of the model leading to the remarkable stationary dis-
tribution (1.1). A priori, no symmetry assumption is done on the parameters
(the model on the left is symmetric, contrary to the one on the right). Similarly,
no convex hypothesis is done on the cone. The formula (1.1) has been obtained
in [3] in the convex case and in [18, §9] in a more restrictive case, and we observe
here that the same formula holds for any value of the opening angle β. Up to
our knowledge, (1.1) is the unique example for which the stationary distribution
density is known in closed form for a non-convex cone.

1.2. Main results

To conclude this introduction, we present the structure of the paper and our
main results.

• Section 2: definition of the model, statement of the recurrence conditions
and introduction of the stationary distribution, Proposition 2.1 on the
classical basic adjoint relationship (characterizing the stationary distribu-
tion)

• Section 3: Proposition 3.1 on a system of two functional equations (the
3/4 plane is split into two convex cones of angle 3π/8, and one equation
is stated for each domain)

• Section 4: general study of the asymmetric case. Various statements on
the kernel, meromorphic continuation of the unknown Laplace transforms,
reduction to a Riemann-Hilbert vector boundary value problem (Theo-
rem 4.4), relation with a Fredholm integral equation



Reflected Brownian motion in a non-convex wedge 743

• Section 5: general study of the symmetric case. Equivalence with a stan-
dard Brownian motion in a quarter plane, resolution and examples

Acknowledgments

We thank Andrew Elvey Price and Kavita Ramanan for interesting discus-
sions.

2. Semimartingalereflected Brownianmotion avoiding aquarter plane

2.1. Definition of the process

We denote the three-quarter plane as

S
def
= {(z1, z2) ∈ R2 : z1 > 0 or z2 > 0}.

The parameters of the model are the drift µ = (µ1, µ2), the reflection vectors
R1 = (r1, 1) and R2 = (1, r2), and the covariance matrix

Σ =

(
σ1 ρ
ρ σ2

)
, (2.1)

see Figure 2.1. Throughout this study, Σ will be assumed to be elliptic, i.e.,
σ1σ2 − ρ2 > 0, thus discarding the degenerated case σ1σ2 − ρ2 = 0.

Figure 2.1. In green color, the three-quarter plane S, in blue the drift µ and in
red the reflection vectors R1 and R2.

More specifically, we define the obliquely reflected Brownian motion Zt =
(Z1

t , Z
2
t ) in the three-quarter plane S as follows:{

Z1
t

def
= Z1

0 +W 1
t + µ1t+ r1L

1
t + L2

t ,

Z2
t

def
= Z2

0 +W 2
t + µ2t+ L1

t + r2L
2
t ,

(2.2)
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where Wt is a planar Brownian motion of covariance Σ, L1
t is (up to a constant)

the local time on the negative part of the abscissa (z1 6 0) and L2
t is the local

time on the negative part of the ordinate axis (z2 6 0). In case of a zero drift,
such a semimartingale definition of reflected Brownian motion is proposed in
the reference paper [39] (including the non-convex wedges); it readily extends
to our drifted case.

Throughout this paper, we assume that the process is positive recurrent and
has a unique stationary distribution (or invariant measure). As it turns out,
this is equivalent to

µ1 < 0 and µ2 < 0, (2.3)

together with
µ1 − r1µ2 > 0 and µ2 − r2µ1 > 0. (2.4)

(In particular, one has r1 > 0 and r2 > 0.) We couldn’t find any reference
proving this statement; however, the same techniques as in [23] by Hobson
and Rogers or [21, Sec. 6] (proving necessary and sufficient conditions in the
quadrant similar as (2.3) and (2.4)) could be used here. Figure 2.1 represents a
case where the parameters satisfy both conditions (2.3) and (2.4). The heuristic
of these conditions is the following. The process is either recurrent or transient,
and if the process is transient, then it tends to infinity. By (2.3), the drift vector
is negative and there are only two possible behaviours for the process to tend
to infinity: either, as t → ∞, Z1

t tends to −∞ and Z2
t > 0, or Z2

t tends to
−∞ and Z1

t > 0. So, we come down to a couple of problems in half-planes,
which are easy to understand, since reflected Brownian motion in a half-plane
is a well-studied process. For example, in the upper half-plane, the conditions
for the process Z1

t not to tend to −∞ is µ1 − r1µ2 > 0 (µ1 − r1µ2 = 0 is a
null recurrent case). Combining the two conditions leads heuristically to (2.4).
Indeed, coupling arguments associated with a pathwise construction could make
the above reasoning more rigorous, but we shall omit them.

Under conditions (2.3) and (2.4), we denote by Π the unique stationary
distribution. In the case of a quarter plane, it is proved in [21] that Π admits
a density with respect to the Lebesgue measure, see Lemma 12 in [21, Sec. 7].
Using exactly the same argument (in particular Lemma 9 in [21, Sec. 7]), we
deduce that in the three-quarter plane, Π admits a density, which we will denote
by π. We also define the boundary invariant measures by

ν1(A) = EΠ

∫ 1

0

1A×{0}(Zs)dL
1
s and ν2(A) = EΠ

∫ 1

0

1{0}×A(Zs)dL
2
s.

The measure ν1 has its support on {z1 6 0} and ν2 has its support on {z2 6 0}.
We will also denote by ν1(z1) and ν2(z2) their respective densities.

Remark that a reflected Brownian motion in the three-quarter plane could
be defined as well in the non-semimartingale case; motivations to consider these
cases are proposed in [30].
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2.2. Basic adjoint relationship

Our approach is based on the following identity, called basic adjoint rela-
tionship, which in the orthant case is proved in [4, 21].

Proposition 2.1. If f is the difference of two convex functions in S, and if∫
S
f(z1, z2)π(z1, z2)dz1dz2 and all the integrals below converge, then∫

S

Gf(z1, z2)π(z1, z2)dz1dz2

+

∫ 0

−∞
R1 · ∇f(z1, 0)ν1(z1)dz1

+

∫ 0

−∞
R2 · ∇f(0, z2)ν2(z2)dz2 = 0,

where the generator is equal to

Gf =
1

2

(
σ1
∂2f

∂z2
1

+ 2ρ
∂2f

∂z1∂z2
+ σ2

∂2f

∂z2
2

)
+ µ1

∂f

∂z1
+ µ2

∂f

∂z2
.

Proof. We apply the Itô-Tanaka formula to the semimartingale Zt, see Theo-
rem 1.5 in [33, Chap. VI §1]. Note that, in the formula of the previous reference,
there is no need to assume that f is C2 since, when f is convex, its second deriva-
tive in the sense of distribution is a positive measure. We obtain

f(Zt) = f(Z0) +

∫ t

0

Gf(Zs)ds+

∫ t

0

∇f(Zs) · dWs

+
∑

i∈{1,2}

∫ t

0

Ri · ∇f(Zs)dL
i
s.

To conclude, we take the expectation over Π in the above equality. 2

Since we take f to be the difference of two convex functions, the first deriva-
tives of f are defined as the left derivatives, and the second derivatives of f are
understood in the sense of distributions.

Remark 2.2. Continuity and differentiability of the measure π(z1, z2) directly
follow from the properties of weak solutions to the partial differential equation
satisfied by π and stated in Proposition 2.1. Indeed, a famous result known
as Weyl’s lemma [38, Lem. 2] asserts that a weakly harmonic function coin-
cides almost everywhere with a strongly harmonic function, and is in particular
smooth. This result generalizes to distributions associated to hypoelliptic op-
erators. Here,

∫
S
Gf(z1, z2)π(z1, z2)dz1dz2 = 0, for all f which are smooth in

S and which cancel near the boundary of S, and we deduce that π is smooth
inside of S.
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3. The main functional equations

Our goal is to use the basic adjoint relationship of Proposition 2.1 to obtain
a kernel equation for the Laplace transform of the stationary distribution. In
the case of a convex cone, it is enough to take f(z1, z2) = exz1+yz2 to obtain
the functional equation, see [5, 16, 17]. However, if the cone is not convex, the
associated integrals will not converge. So we need to divide the three-quarter
plane into two regions. We define the two following 3

8 -planes:

S1
def
= {(z1, z2) ∈ R2 : z1 6 z2 and z2 > 0}

and S2
def
= S \ S1, see Figure 3.1.

Figure 3.1. Left: the three-quarter plane divided in two sets, S1 in green and S2

in orange. Right: the three sets Sε1 (in green color), Sε2 (orange) and S̃ε (blue).

Let us define the Laplace transform of the invariant measure π in S1 by

L1(x, y)
def
=

∫
S1

exz1+yz2π(z1, z2)dz1dz2, (3.1)

the Laplace transform of π on the diagonal

m(x+ y)
def
=

∫ ∞
0

e(x+y)zπ(z, z)dz,

the Laplace transform of the normal derivative of π on the diagonal (which does
exist by Remark 2.2)

n(x+ y)
def
=

∫ ∞
0

e(x+y)z

(
∂π

∂z1
(z, z)− ∂π

∂z2
(z, z)

)
dz, (3.2)

and the Laplace transform of the boundary measure ν1 on the abscissa

`1(x)
def
=

∫ 0

−∞
exz1ν1(z1)dz1.
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Introduce finally the constant

θ
def
=
σ1 + σ2 − 2ρ

2
,

which is positive due to the ellipticity condition ρ2 − σ1σ2 < 0.
The remainder of Section 3 is devoted to proving the following result:

Proposition 3.1 (Functional equation in S1).
For all (x, y) in {<(x) > 0, <(x+ y) 6 0}, we have

−K(x, y)L1(x, y) = k(x, y)m(x+ y) + θn(x+ y)

+ k1(x, y)`1(x) + (1− r1)ν1(0) + (r2 − 1)ν2(0),

where the kernel is defined by

K(x, y)
def
=

1

2

(
σ1x

2 + 2ρxy + σ2y
2
)

+ µ1x+ µ2y, (3.3)

while k and k1 are polynomials of degree one in two variables given by

k(x, y)
def
=
θ(y − x)

2
+

1

2
(σ2 − σ1)(x+ y) + µ2 − µ1,

k1(x, y)
def
= r1x+ y.

A symmetric functional equation holds on the domain S2; it involves the func-
tions m and n above, as well as

L2(x, y)
def
=

∫
S2

exz1+yz2π(z1, z2)dz1dz2 and `2(y)
def
=

∫ 0

−∞
eyz2ν2(z2)dz2.

See (4.2) for the exact statement. The proof of Proposition 3.1 is rather lengthy
and postponed to Appendix A.

4. The general asymmetric case

4.1. Sketch of the approach

For the sake of brevity, we shall put

E
def
= (1− r1)ν1(0)− (1− r2)ν2(0).

Then the two functional equations obtained in Section 3 (see in particular Propo-
sition 3.1), corresponding to the regions S1 and S2 in the (z1, z2)-plane, see
Figure 3.1, are simply rewritten as follows:

K(x, y)L1(x, y) + k(x, y)m(x+ y) + θn(x+ y) + k1(x, y)`1(x) + E = 0, (4.1)
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in the region {<(x) > 0, <(x+ y) 6 0};

K(x, y)L2(x, y)− k(x, y)m(x+ y)− θn(x+ y) + k2(x, y)`2(y)− E = 0, (4.2)

in the region {<(y) > 0, <(x+ y) 6 0}.

The main idea is to build a system, where the new variables are defined in one
and the same region, by means of a simple change of variables. Clearly, this
operation has a cost, since there will be two different kernels, the positive side
being they can be simultaneously analyzed starting from a common domain.
The key milestones of the study are listed hereunder:

• Make the meromorphic continuation of all functions in their respective
(cut) complex planes (see Theorem 4.3).

• Construct a vectorial Riemann boundary value problem for the pair (`1, `2)
(see Theorem 4.4).

• Derive a Fredholm integral equation for m (see Equation (4.25)).

4.2. Functional equations and kernels

Setting respectively

p = −x, q = x+ y, in Equation (4.1),

and
p = −y, q = x+ y, in Equation (4.2),

leads to the system

U(p, q)L1(p, q) +A(p, q)m(q) + θn(q) + C(p, q)`1(p) + E = 0, (4.3)

V (p, q)L2(p, q) +B(p, q)m(q)− θn(q) +D(p, q)`2(p)− E = 0, (4.4)

where both equations are a priori defined in the domain {<(p) 6 0, <(q) 6 0},
and 

U(p, q)
def
= θp2 +

σ2

2
q2 + (σ2 − ρ)pq + (µ2 − µ1)p+ µ2q,

V (p, q)
def
= θp2 +

σ1

2
q2 + (σ1 − ρ)pq + (µ1 − µ2)p+ µ1q,

A(p, q)
def
=
θ(2p+ q)

2
+

(σ2 − σ1)q

2
+ µ2 − µ1,

B(p, q)
def
=
θ(2p+ q)

2
+

(σ1 − σ2)q

2
+ µ1 − µ2,

C(p, q)
def
= (1− r1)p+ q,

D(p, q)
def
= (1− r2)p+ q.

(4.5)
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Notation For convenience and to distinguish between the two kernels, we shall
add in a superscript position the letter u (resp. v) to any quantity related to the
kernel U(x, y) (resp. V (x, y)). Moreover, if a property holds both for u and v,
the superscript letter is omitted ad libitum.

Accordingly, the branches of the algebraic curve U = 0 (resp. V = 0) over
the q-plane will be denoted by Pui (q) (resp. P vi (q)), i = 1, 2. By definition, they
are solutions to

U(Pui (q), q) = 0 and V (P vi (q), q) = 0. (4.6)

In particular, they are simple algebraic functions of order 2. Similarly, Qui (p)
(resp. Qvi (p)) will stand for the branches over the p-plane, i = 1, 2.

Although we are mostly working under the stationary hypotheses (2.3) and
(2.4), notice that Lemmas 4.1 and 4.2 below hold true for any value of the drift
vector (µ1, µ2).

Lemma 4.1. The functions Pui (q) and P vi (q), i = 1, 2, are analytic in the whole
complex plane cut along (−∞, q1]∪ [q2,∞), where the branch points q1 < 0 and
q2 > 0 are the two real roots of the equation

(ρ2 − σ1σ2)q2 + 2[µ1(ρ− σ2) + µ2(ρ− σ1)]q + (µ1 − µ2)2 = 0. (4.7)

Remarkably, q1 and q2 are the same for the two kernels U and V . Moreover:

• The branches Pu1 and Pu2 are separated and satisfy
<(Pu1 (ix)) 6 0 6 <(Pu2 (ix)), ∀x ∈ R,

<(Pu1 (q)) 6 <(Pu2 (q)), ∀q ∈ C,

Pu1 (0) = min

{
0,
µ1 − µ2

2θ

}
, Pu2 (0) = max

{
0,
µ1 − µ2

2θ

}
.

(4.8)

They map the cut (−∞, q1] (resp. [q2,∞)) onto the right branch Hu+ (resp.
left branch Hu−) of the hyperbola Hu with equation

(ρ2 − σ1σ2)x2 + (σ2 − ρ)2y2 + 2(σ2µ1 − ρµ2)x

+
(µ2 − µ1)(σ2(µ1 + µ2)− 2ρµ2)

2θ
= 0. (4.9)

• The branches P v1 and P v2 are separated and satisfy
<(P v1 (ix)) 6 0 6 <(P v2 (ix)), ∀x ∈ R,

<(P v1 (q)) 6 <(P v2 (q)), ∀p ∈ C,

P v1 (0) = min

{
0,
µ2 − µ1

2θ

}
, P v2 (0) = max

{
0,
µ2 − µ1

2θ

}
.

(4.10)
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They map the cut (−∞, q1] (resp. [q2,∞)) onto the right branch Hv+ (resp.
left branch Hv−) of the hyperbola Hv with equation

(ρ2 − σ1σ2)x2 + (σ1 − ρ)2y2

+ 2(σ1µ2 − ρµ1)x+
(µ1 − µ2)(σ1(µ1 + µ2)− 2ρµ1)

2θ
= 0. (4.11)

Figure 4.1. Illustration of Lemma 4.1 in the case where µ1 > µ2: curves
{Pu1 (ix) : x ∈ R} and {Pu2 (ix) : x ∈ R} in red; curves {P v1 (ix) : x ∈ R} and
{P v2 (ix) : x ∈ R} in blue; hyperbolas Hu and Hv in dark green and light green
respectively. Playing with the parameters is possible thanks to the following
GeoGebra animation https://www.geogebra.org/m/phvjk35w

Proof. The branch points of P (q) are the zeros of the discriminant of U(p, q) = 0
viewed as a polynomial in p, and equation (4.7) follows directly.

In order to prove (4.8), let P (q) denote the multivalued algebraic function

satisfying (4.6). Letting q = ix with x ∈ R and P (q)
def
= α + iβ with real α, β,

then separating real and imaginary parts, we obtainθα
2 + (µ2 − µ1)α−

(
θβ2 + (σ2 − ρ)xβ +

σ2

2
x2
)

= 0,

β(2θα+ µ2 − µ1) + x
(
α(σ2 − ρ) + µ2

)
= 0.

(4.12)

Then one checks that the first equation of (4.12), viewed as a polynomial in α,
has two real roots with opposite sign. Indeed, the quadratic polynomial in β

θβ2 + (σ2 − ρ)xβ +
σ2

2
x2
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is always positive, due to the ellipticity condition.
The second property of (4.8) is a direct application of the maximum modulus

principle applied to the function expP (q). More precisely, we look at the func-
tion expP (q) on the domain C \ ((−∞, q1] ∪ [q2,∞)). Using the first property
of (4.8), we deduce that for some values of q, one has∣∣expP1(q)

∣∣ 6 ∣∣expP2(q)
∣∣. (4.13)

On the other hand, on the cut q ∈ (−∞, q1] ∪ [q2,∞), the branches P1(q) and
P2(q) are complex conjugate and thus

∣∣expP1(q)
∣∣ =

∣∣expP2(q)
∣∣. Since the cut

is the boundary of the cut plane, the maximum modulus principle entails that
the inequality (4.13) holds true globally on C.

The analytic expression (4.9) of the hyperbola follows from direct computa-
tions, see Lemma 5.8 and its proof for similar computations.

We note the pleasant symmetry of (4.7) with respect to the parameters.
This is mainly due to the change of parameters from (x, y) to (p, q). As it will
emerge later, that symmetry plays an important role in our analysis. The proof
of the lemma is complete. 2

Quite analogous properties hold for Qui (p) and Qvi (p), but now the branch
points depend on the kernel. They are partially listed in the next lemma, where
the equations of the hyperbolas are omitted.

Lemma 4.2. The functions Qu1 (p) and Qu2 (p) are analytic in the complex plane
cut along (−∞, pu1 ] ∪ [pu2 ,∞), where the branch points pu1 < 0 and pu2 > 0 are
the real roots of the equation

(ρ2 − σ1σ2)p2 + 2(σ2µ1 − ρµ2)p+ µ2
2 = 0. (4.14)

The branches Qu1 and Qu2 are separated and satisfy
<(Qu1 (ix)) 6 0 6 <(Qu2 (ix)), ∀x ∈ R,

<(Qu1 (p)) 6 <(Qu2 (p)), ∀p ∈ C,

Qu1 (0) = min

{
0,
−2µ2

σ2

}
, Qu2 (0) = max

{
0,
−2µ2

σ2

}
.

(4.15)

They map the cut (−∞, pu1 ] (resp. [pu2 ,∞)) onto the right branch Ku+ (resp. the
left branch Ku−) of the hyperbola Ku.

Similarly, the functions Qv1(p) and Qv2(p) are analytic in the complex plane
cut along (−∞, pv1] ∪ [pv2,∞), where the branch points pv1 < 0 and pv2 > 0 are
the real roots of the equation

(ρ2 − σ1σ2)p2 + 2(σ1µ2 − ρµ1)p+ µ2
1 = 0. (4.16)
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The branches Qv1 and Qv2 are separated and satisfy
<(Qv1(ix)) 6 0 6 <(Qv2(ix)), ∀x ∈ R,

<(Qv1(p)) 6 <(Qv2(p)), ∀p ∈ C,

Qv1(0) = min

{
0,
−2µ1

σ1

}
, Qv2(0) = max

{
0,
−2µ1

σ1

}
.

(4.17)

They map the cut (−∞, pv1] (resp. [pv2,∞)) onto the right branch Kv+ (resp. the
left branch Kv−) of the hyperbola Kv.

It is worth remarking at once that, by using (4.3), (4.4) and Lemma 4.1, one
can set two boundary value problems for the couple of functions [`1(p), `2(p)] on
the respective hyperbolas Hu+ and Hv+.

4.3. Meromorphic continuation to the complex plane

The method relies on an iterative algorithm, as in [11, Chap. 10], and the
following theorem holds. Below and throughout, if H± denotes a branch of
hyperbola as on Figure 4.1, H±,int will represent the left connected component
of C \ H±.

Theorem 4.3. The functions m, n, `1 and `2 can be continued as meromorphic
functions to the whole complex plane cut along proper positive real half-lines in
their respective planes. The number of poles is finite, and the possible poles of
m and n inside the domain Ku−,int

⋃
Hv−,int coincide.

4.4. Reduction to a vectorial Hilbert boundary value problem

For all q ∈ (−∞, q1], Equations (4.3) and (4.4) yield the linear systemA(Pu1 (q), q)m(q) + θn(q) + C(Pu1 (q), q)`1(Pu1 (q)) + E = 0,

B(P v1 (q), q)m(q)− θn(q) +D(P v1 (q), q)`2(P v1 (q))− E = 0,

which in turn gives

m(q) =
C(Pu1 (q), q)`1(Pu1 (q)) +D(P v1 (q), q)`2(P v1 (q))

∆(q)
,

n(q) =
B(P v1 (q), q)C(Pu1 (q), q)`1(Pu1 (q))−A(Pu1 (q), q)D(P v1 (q), q)`2(P v1 (q))

θ∆(q)

− E

θ
,

(4.18)
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where

∆(q)
def
= −

(
A(Pu1 (q), q) +B(P v1 (q), q)

)
= −θ

(
q + Pu1 (q) + P v1 (q)

)
. (4.19)

Now, by using the continuity of the left-hand side of the system (4.18) when q
traverses the cut (−∞, q1], we can set a two-dimensional homogeneous Hilbert
boundary value problem for the vector [`1, `2]. More precisely, we first deduce
from (4.18) the two following relations, which hold for all q ∈ (−∞, q1]:

C(Pu1 (q), q)`1(Pu1 (q)) +D(P v1 (q), q)`2(P v1 (q))

∆(q)
(4.20)

=
C(Pu1 (q), q)`1(Pu1 (q)) +D(P v1 (q), q)`2(P v1 (q))

∆(q)
,

and

C(Pu1 (q), q)B(P v1 (q), q)`1(Pu1 (q))−A(Pu1 (q), q)D(P v1 (q), q)`2(P v1 (q))

∆(q)

=
B(P v1 (q), q)C(Pu1 (q), q)`1(Pu1 (q))−A(Pu1 (q), q)D(P v1 (q), q)`2(P v1 (q))

∆(q)
.

(4.21)

Introducing the vector L(q)
def
= [`1(Pu1 (q)), `2(P v1 (q))] and the 2× 2-matrix

G(q)
def
=

1

∆(q)


−γ̄(α+ β̄)

γ

δ̄(ᾱ− α)

γ
γ̄(β̄ − β)

δ

−δ̄(β + ᾱ)

δ

 , (4.22)

with

α = A(Pu1 (q), q), β = B(P v1 (q), q), γ = C(Pu1 (q), q), δ = D(P v1 (q), q),
(4.23)

the system (4.20)–(4.21) immediately yields the following result:

Theorem 4.4. We have

L+(q) = G(q)L−(q), ∀q ∈ (−∞, q1],

where L+(q) (resp. L−(q)) is the limit of L(q) when q reaches the cut from
below (resp. from above) in the complex plane.

Remark 4.5. With the notation (4.23), the determinant of the matrix in (4.22)
can be rewritten as

γδ

γδ

α+ β

α+ β
.

Its modulus is one, and it is interesting to ask whether this fact could be antic-
ipated.
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Let us denote by ωu the conformal mapping of Hu+,int onto the unit disk D.

Then ωu is analytic in Hu+,int, its inverse function ω−1
u is analytic in D, and we

have
|ωu(p)| = 1, ∀p ∈ Hu+.

Actually, ωu has a known explicit form (see, e.g., Chapter 6 in [29]). Moreover,
by symmetry, one can choose ωu(p) = ωu(p), ∀p ∈ Hu+, so that

ωu(p) =
1

ωu(p)
.

In other words, for |z| = 1, we have z = 1/z and p = ω−1
u (1/z). Similar

definitions hold by exchanging the roles of u and v.
Then, setting

Φ+(z)
def
= [`1(ω−1

u (z)), `2(ω−1
v (z))], ∀z ∈ D,

and
Φ−(z)

def
= Φ+(1/z), ∀|z| > 1,

we obtain the boundary condition

Φ+(z) = H(z)Φ−(z), ∀|z| = 1, (4.24)

where H(z) is the 2 × 2 matrix directly derived from G(q), given in (4.22), by
using the functions ωu(p) and ωv(p). The problem can now be formulated as
follows:

Find a sectionally meromorphic vector Φ(z), constant at infinity,
equal to Φ+(z) (resp. Φ−(z)) for z ∈ D (resp. for z /∈ D), and which
satisfies the boundary condition (4.24).

4.5. On the solvability of the vectorial boundary value problem (4.24)

It is natural to ask whether the boundary value problem (4.24) may be
solved in closed form. As a matter of comparison, scalar (i.e., one-dimensional)
boundary value problems may be solved in terms of contour integrals, involving
conformal mappings or uniformization techniques. This is the situation encoun-
tered in the convex case [1, 17] as well as in the non-convex symmetric case, as
shown in the following Section 5. However, vectorial boundary value problems
are in general hardly solvable in closed form [12,27,37].

Here, after eliminating the possible poles of Φ inside the unit disk, the so-
lution to (4.24) is shown to be directly connected with the Fredholm integral
equation (see, e.g., [27, 37])

Φ−(z0)− 1

2π

∫
|z|=1

H−1(z0)H(z)− I
z − z0

Φ−(z)dz = Φ−(∞), (4.25)
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where I stands for the identity matrix. Since all elements of the matrix H(z)
are explicitly known, we can express the formal solution of the BVP (4.24) as a
convergent matrix power series from (4.25).

Let us do three additional remarks.

• To the best of our knowledge, the only asymmetric case which admits a
density in closed form is the one mentioned at the end of the introduction,
with explicit formula (1.1), see Figure 1.4. This example, which works
for any opening angle β ∈ (0, 2π), is not obtained as a consequence of
the vectorial problem (4.24), but rather from an analogy with the convex
case studied in [3]. However, by a direct (but tedious) algebra, it can be
checked a posteriori that the vectorial boundary value problem (4.24) is
satisfied by the solution (1.1).

• The solvability of (4.24) should be strongly related to potential nice factor-
izations of the matrix H(z). For example, in case the matrix H(z) could
be written as the product of matrices Ψ+(z)−1Ψ−(z), with Ψ sectionally
meromorphic on the complex plane cut along the unit circle, then (4.24)
could be rewritten as the homogeneous problem (ΨΦ)+(z) = (ΨΦ)−(z),
which is solvable. Finding such factorizations appears as a kind of vecto-
rial Tutte’s invariant method, in the terminology of [3, 16].

• In the symmetric case, the vectorial problem becomes solvable, as we will
see in the next Section 5. On the other hand, in the non-symmetric case,
our work appeals further developments. In this respect, an interesting
intermediate semi-symmetrical situation takes place when µ1 = µ2, σ1 =
σ2, but r1 6= r2, which should lead to some reasonably explicit results.

5. The symmetric case

When the model is symmetric, we shall put

µ
def
= µ1 = µ2, σ

def
= σ1 = σ2 and r

def
= r1 = r2.

The invariant measure is symmetric w.r.t. the diagonal z1 = z2. Consequently,
we have π(z1, z2) = π(z2, z1), which yields n(x+ y) = 0, see (3.2).

5.1. Reformulation as a reflected Brownian motion in a 3/8 plane

Let Ẑt be the reflected process of Zt along the diagonal defined by

Ẑt
def
= (Ẑ1

t , Ẑ
2
t )

def
=

1

2
(Z1

t + Z2
t − |Z2

t − Z1
t |, Z1

t + Z2
t + |Z2

t − Z1
t |)

=

{
(Z1

t , Z
2
t ) if Zt ∈ S1,

(Z2
t , Z

1
t ) if Zt ∈ S2.
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Figure 5.1. In the symmetric case, Brownian motion in a three-quarter plane
can be reduced to a more standard reflected Brownian motion in a convex cone.
More precisely, its projection in S1 defines a Brownian motion Ẑ in a wedge of
opening 3π/8. The left picture above represents the drift and reflection vectors

of Z̃, to be studied in Section 5.1. After a first change of variables, it becomes
a Brownian motion Z̃ in the quarter plane, as studied in Section 5.2, see the
middle picture. On the right, the model is mapped to a β/2-cone through a
linear transform, so as to admit an identity covariance matrix: this last model
will be denoted by T Z̃, see Section 5.7.

As the following result will establish, the process Ẑt is a standard reflected
Brownian motion in the convex cone S1, with reflection vector (r, 1) on the
horizontal axis and an orthogonal reflection on the diagonal, see Figure 5.1 (left).
We also provide a semimartingale decomposition of this reflected process.

Lemma 5.1. In the symmetrical case, we have{
Ẑ1
t = Ẑ1

0 + Ŵ 1
t + µt+ rL̂1

t − 1
2 L̂

2
t ,

Ẑ2
t = Ẑ2

0 + Ŵ 2
t + µt+ L̂1

t + 1
2 L̂

2
t ,

where Ŵt is a Brownian motion with the same covariance matrix as Wt, L̂
2
t is

the local time of Ẑt on the diagonal, and L̂1
t = L1

t + L2
t is the local time of Ẑt

on the horizontal axis. We deduce that Ẑ is a reflected Brownian motion in a
3/8-plane, with reflection vector (r, 1) on the horizontal axis and an orthogonal
reflection on the diagonal.

Proof. By (2.2), we have

Z2
t − Z1

t = Z2
0 − Z1

0 +W 2
t −W 1

t + (r − 1)(L2
t − L1

t ).

We apply Itô-Tanaka formula (see Theorem 1.5 in [33, Chap. VI §1]) to the
continuous semimartingale Z2

t − Z1
t and to the absolute value | · |. We obtain

|Z2
t − Z1

t | = Z2
0 − Z1

0 +

∫ t

0

sgn(Z2
t − Z1

t )(dW 2
t − dW 1

t )
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+ (r − 1)

∫ t

0

sgn(Z2
t − Z1

t )(dL2
t − dL1

t ) + L̂2
t

= Z2
0 − Z1

0 +

∫ t

0

sgn(Z2
t − Z1

t )(dW 2
t − dW 1

t )+(1− r)(L1
t +L2

t )+L̂2
t ,

as L1
t increases only when (Z2

t < 0, Z1
t = 0) and L2

t increases only when (Z1
t <

0, Z2
t = 0). Let us recall that, by definition, L̂1

t = L1
t + L2

t . By (2.2), we have

Z1
t + Z2

t = Z1
0 + Z2

0 +W 1
t +W 2

t + 2µt+ (r + 1)(L1
t + L2

t ).

Then, we directly obtain{
Ẑ1
t = 1

2 (Z1
t + Z2

t − |Z2
t − Z1

t |) = Ẑ1
0 + Ŵ 1

t + µt+ rL̂1
t − 1

2 L̂
2
t ,

Ẑ2
t = 1

2 (Z1
t + Z2

t + |Z2
t − Z1

t |) = Ẑ2
0 + Ŵ 2

t + µt+ L̂1
t + 1

2 L̂
2
t ,

where we defined
Ŵ 1
t

def
=

∫ t

0

1 + sgn(Z2
t − Z1

t )

2
dW 1

t +

∫ t

0

1− sgn(Z2
t − Z1

t )

2
dW 2

t ,

Ŵ 2
t

def
=

∫ t

0

1− sgn(Z2
t − Z1

t )

2
dW 1

t +

∫ t

0

1 + sgn(Z2
t − Z1

t )

2
dW 2

t .

We easily verify that the associated quadratic variations satisfy 〈Ŵ 1〉t = 〈W 1〉t
= σ1t, 〈Ŵ 2〉t = 〈W 2〉t = σ2t and 〈Ŵ 1, Ŵ 2〉t = 〈W 1,W 2〉t = ρt and we conclude
by Lvy’s characterization theorem, see Theorem 3.6 in [33, Chap. IV §3 p150].

2

The reflected process Ẑ is also recurrent and we denote π̂ its stationary
distribution.

Proposition 5.2. For all measurable sets A ⊂ S1, we have π(A) = 1
2 π̂(A).

Proof. Let A ⊂ S1 and Â ∈ S2 be the symmetric set with respect to the first di-
agonal. In the symmetric case, we have π(A) = π(Â). By the ergodic properties
of an invariant measure we have π(A) = limt→∞ P[Zt ∈ A]. Then

π(A) =
1

2
(π(A) + π(Â))

=
1

2
lim
t→∞

(
P[Zt ∈ A] + P[Zt ∈ Â]

)
=

1

2
lim
t→∞

P[Ẑt ∈ A]

=
1

2
π̂(A).

2
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5.2. Reformulation as a reflected Brownian motion in a quarter plane

We now perform a change of variables to obtain a new process Z̃t in the
positive quarter plane, defined by

Z̃t
def
= (−Ẑ1

t + Ẑ2
t , Ẑ

2
t ),

see Figure 5.1. This reformulation at hand, we will be able to use the numerous
results in the literature on reflected Brownian motion in a quadrant. Let us
emphasize here that our drift is vertical (as shown below), while most of the
existing results actually assume that the drift is either zero or oblique (with two
non-zero coordinates). Accordingly, some attention is needed when applying
directly previous results.

Proposition 5.3. The process Z̃t satisfies{
Z̃1
t = Z̃1

0 + W̃ 1
t + (1− r)L̂1

t + L̂2
t ,

Z̃2
t = Z̃2

0 + W̃ 2
t + µt+ L̂1

t + 1
2 L̂

2
t ,

where W̃ is a Brownian motion with covariance matrix

Σ̃
def
=

(
σ̃1 ρ̃
ρ̃ σ̃2

)
=

(
2(σ − ρ) (σ − ρ)
(σ − ρ) σ

)
,

while L̂1
t is the local time of the process on the horizontal axis and L̂2

t is the local

time on the vertical axis. Thus Z̃t is a reflected Brownian motion in the quadrant

R2
+ with drift (0, µ), covariance matrix Σ̃ and reflections (r̃1, 1)

def
= (1− r, 1) and

(1, r̃2)
def
= (1, 1/2).

Proof. By Lemma 5.1, we have{
Ẑ1
t = Ẑ1

0 + Ŵ 1
t + µt+ rL̂1

t − 1
2 L̂

2
t ,

Ẑ2
t = Ẑ2

0 + Ŵ 2
t + µt+ L̂1

t + 1
2 L̂

2
t ,

where Ŵt is a Brownian motion with the same covariance matrix as Wt, L̂
2
t is

the local time of Ẑt on the diagonal and L̂1
t = L1

t + L2
t is the local time of Ẑt

on the horizontal axis. Then we have{
Z̃1
t = −Ẑ1

0 + Ẑ2
0 − Ŵ 1

t + Ŵ 2
t + (1− r)L̂1

t + L̂2
t ,

Z̃2
t = Ẑ2

0 + Ŵ 2
t + µt+ L̂1

t + 1
2 L̂

2
t .

The covariance matrix of the Brownian motion W̃t
def
= (−Ŵ 1

t + Ŵ 2
t , Ŵ

2
t ) is(

σ̃1 ρ̃
ρ̃ σ̃2

)
=

(
2(σ − ρ) (σ − ρ)
(σ − ρ) σ

)
.

2
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Let L̂1(x, y) be the Laplace transform of 1
2 π̂ and L̃1(p, q) be the Laplace

transform of 1
2 π̃, where π̃ is the stationary distribution of Z̃. Let finally L1(x, y)

be the Laplace transform as in (3.1).

Lemma 5.4. For (p, q) = (−x, x+ y), the various Laplace transforms satisfy

L1(x, y) = L̂1(x, y) = L̃1(−x, x+ y) = L̃1(p, q).

Proof. Proposition 5.2 implies that L1(x, y) = L̂1(x, y). Using that Z̃t = (−Ẑ1
t +

Ẑ2
t , Ẑ

2
t ), a simple change of variables in the Laplace transform yields L̂1(x, y) =

L̃1(−x, x+ y). 2

5.3. Functional equations

We now state a functional equation, which characterizes the Laplace trans-
form L̃1(p, q).

Proposition 5.5. In the symmetrical case, the following functional equation
holds:

U(p, q)L̃1(p, q) + C(p, q)`1(p) +A(p, q)m(q) = 0, (5.1)

where 
U(p, q) = (σ − ρ)p2 + (σ − ρ)qp+

σq2

2
+ µq,

C(p, q) = (1− r)p+ q,

A(p, q) = (σ − ρ)(p+ 1
2q).

(5.2)

As a consequence of Proposition 5.5, the Laplace transform L̃1(p, q) may be
computed along the same way as in [17] (contour integral expressions) or [3]
(hypergeometric expressions). Interestingly, this functional equation may be
obtained by two different techniques:

1. We can use the functional equation (4.3) already obtained in the general
(a priori non-symmetric) case and apply it to the symmetric case, using
Lemma 5.4.

2. We can also use Proposition 5.3, which says that Z̃ is a reflected Brownian
motion in a quadrant and use the functional equation already known in
the bibliography [5, Eq. (2.3)] and [17, Eq. (5)].

We present both proofs below.

Proof 1 of Proposition 5.5. In the symmetric case, the main functional equation
(see Proposition 3.1) takes the simpler form

K(x, y)L1(x, y) + k(x, y)m(x+ y) + k1(x, y)`1(x) = 0, (5.3)
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where

K(x, y) =
1

2
(σx2 + 2ρxy + σy2) + µ(x+ y),

and

k(x, y) =
1

2
(σ − ρ)(−x+ y) and k1(x, y) = rx+ y.

As in Section 4.2, we introduce the new variables

p = −x and q = x+ y.

Keeping the same names for the unknown functions, we get from (5.3) and (4.3)

U(p, q)L1(p, q) + C(p, q)`1(p) +A(p, q)m(q) = 0,

where, by using (4.5), we obtain the value of U , C and A given in (5.2). 2

Proof 2 of Proposition 5.5. By Proposition 5.3, the process Z̃ is a reflected
Brownian motion in a quadrant. We denote by ν̃ the density of the bound-
ary invariant measure of Z̃ on the vertical axis, which is defined by

ν̃(x)dx = EΠ

∫ 1

0

1dx×{0}(Z̃s)dL̂
2
s.

Now recall from [3, §2.2] that we have

ν̃(x) = (σ − ρ)π̃(0, x) = 2(σ − ρ)π(x, x).

It follows that the Laplace transform of ν̃ is equal to 2(σ − ρ)m(q). It remains
to use the well-known functional equation for a reflected Brownian motion in
a quadrant, see, e.g., [5, Eq. (2.3)] and [17, Eq. (5)]. Thus, we obtain the
functional equation (5.3). 2

5.4. The roots of the kernel U(p, q)

The formulas of Lemmas 4.1 and 4.2 are simplified in a pleasant way.

Lemma 5.6. The function U(p, q) in (5.1), viewed as a polynomial in the vari-
able q, has two roots Q1(p) and Q2(p), which are the branches of a two-sheeted
covering over the p-plane. They are analytic in the whole complex plane cut
along (−∞, p1] ∪ [p2,∞), with

p1 =
µ
(
σ − ρ+

√
2σ(σ − ρ)

)
σ2 − ρ2

< 0 < p2 =
µ
(
σ − ρ−

√
2σ(σ − ρ)

)
σ2 − ρ2

. (5.4)

The branches Q1(p) and Q2(p) are separated (except on the cut) and they satisfy<(Q1(ix)) 6 0 6 <(Q2(ix)), ∀x ∈ R,

<(Q1(p)) 6 <(Q2(p)), ∀p ∈ C.
(5.5)
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Proof. The last property of (5.5) is a direct application of the maximum mod-
ulus principle to the function expQ(p). The proof of the lemma is complete.

2

Mutatis mutandis, the following lemma holds, with the convenient notation.

Lemma 5.7. The function V (p, q), viewed as a polynomial in the variable p, has
two roots P1(q) and P2(q), which are the branches of a two-sheeted covering over
the q-plane. They are analytic in the whole complex plane cut along (−∞, q1]∪
[q2,∞), with

q1 = 0 < q2 = − 4µ

σ + ρ
. (5.6)

They are separated and satisfy<(P1(ix)) 6 0 6 <(P2(ix)), ∀x ∈ R,

<(P1(p)) 6 <(P2(p)), ∀p ∈ C.
(5.7)

With the above definitions, when µ < 0,

P1(0) = P2(0) = 0 and Q1(0) = 0.

Our goal is to set a boundary value problem (BVP) for either of the functions
m(q) or `1(p) on an adequate hyperbola.

5.5. The hyperbolas

The following lemma is an immediate application of the results of Lemma 4.1.

Lemma 5.8. The functions Q1 and Q2 map the cut (−∞, p1] (resp. [p2,∞))
onto the right branch H+

q (resp. the left branch H−q ) of the hyperbola Hq

(σ + ρ)x2 − (σ − ρ)y2 + 4µx+
2µ2

σ
= 0, (5.8)

rewritten in the canonical form (since σ > |ρ|) as(
x+

2µ

σ + ρ

)2

−
(
σ − ρ
σ + ρ

)
y2 =

2µ2(σ − ρ)

σ(σ + ρ)2
. (5.9)

Similarly, P1 and P2 map the cut (−∞, q1] (resp. [q2,∞)) onto the right branch
H+
p (resp. the left branch H−p ) of the hyperbola Hp(

x− µ

σ + ρ

)2

−
(
σ − ρ
σ + ρ

)
y2 =

(
µ

σ + ρ

)2

, (5.10)

which goes through the point (0, 0).
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Proof. On the cuts [p1,∞) and (−∞, p2], the quantities Q1(p) and Q2(p) take
complex conjugate values of the form x± iy, where

Q1(p) +Q2(p) =
−2[µ+ (σ − ρ)p]

σ
= 2x,

Q1(p)Q2(p) =
2(σ − ρ)p2

σ
= x2 + y2.

Equations (5.8) and (5.9) follow immediately, and (5.10) is obtained in an en-
tirely similar way. 2

5.6. Analytic continuation and BVP

For any arbitrary simple closed curve U , GU (resp. GcU ) will denote the
interior (resp. exterior) domain bounded by U , i.e., the domain remaining on the
left-hand side when U is traversed in the positive (counterclockwise) direction.
This definition remains valid for the case when U is unbounded but closable at
infinity. For instance, GH+

q
(resp. GcH+

q
) is the region situated to the right (resp.

to the left) of the branch H+
q of the hyperbola Hq.

Corollary 5.9.

1. GH−p \ [−∞, p1]
Q2(p)
−−−−−→←−−−−−
P1(q)

GH+
q
\ [q2,+∞] and the mappings are conformal.

2. The values of Q1 belong to GcH+
q

.

3. The values of Q2 belong to GcH−q
.

Moreover, the following automorphy relationships hold:

P1 ◦Q1(p) =

{
p, if p ∈ GcH+

p
,

6= p, if p ∈ GH+
p
.

Then P1 ◦Q1(GcH+
p

) = GcH+
p

P2 ◦Q1(p) =

{
p, if p ∈ GH+

p
,

6= p, if p ∈ GcH+
p
.

Then P2 ◦Q1(GH+
p

) = GH+
p
.

P1 ◦Q2(p) =

{
p, if p ∈ GH−p ,
6= p, if p ∈ GcH−p .

Then P1 ◦Q2(GH−p ) = GH−p .

P2 ◦Q2(p) =

{
p, if p ∈ GcH−p ,
6= p if p ∈ GH−p .

Then P2 ◦Q2(GcH−p
) = GcH−p

Proof. The arguments are analogous to those presented in [11, Chap. 5 and
Chap. 6]. Assertion 1 is immediate. As for assertions 2 and 3, they follow mainly
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from the maximum modulus principle applied to the functions Q1(p) and Q2(p)
respectively. The automorphy relationships can be checked up to some tedious
calculus (omitted). They also can be verified by using the following GeoGebra
numerical animation https://www.geogebra.org/m/phvjk35w 2

Letting q tend successively to the upper and lower edge of the slit (−∞, q1],
and using the fact that m(q) is analytic in the left half-plane {<(q) ≤ 0}, we
eliminate m(q) from (5.1) to get

`1(P1(q))F (P1(q), q)− `1(P2(q))F (P2(q), q) = 0, for q ∈ (−∞, q1], (5.11)

where

F (p, q) =
C(p, q)

A(p, q)
.

Then the determination of `1(p), meromorphic in the domain GcH+
p

, is equiva-

lent to solving a BVP of Riemann-Hilbert-Carleman type, on the contour H+
p

in the complex plane, as originally proposed in [10]. More precisely, by us-
ing the first two properties of Corollary 5.9, and remembering that on the cut
(−∞, q1], P1(q) = P2(q), this BVP takes the following form:

`1(p)K(p)− `1(p)K(p) = 0, p ∈ H+
p , (5.12)

where K(p) = F (p,Q1(p)), and `1 is sought to be meromorphic inside GcH+
p

, its

poles being the possible zeros of C(p,Q1(p)) in the region GcH+
p
∩ {<(p) > 0}.

Interestingly, Corollary 5.9 allows to carry out the analytic continuation of
the functions `1(p) and m(q), satisfying equation (5.1).

Theorem 5.10. The functional equation

`1(p)F (p,Q1(p))− `1(P2 ◦Q1(p))F (P2 ◦Q1(p), Q1(p)) = 0 (5.13)

is valid for all p ∈ C and provides the analytic continuation of `1 as a meromor-
phic function (the number of poles being finite) to the whole complex plane cut
along [p2,∞).

Proof. It is a direct consequence of the automorphy properties given in Corol-
lary 5.9. Indeed, it suffices in equation (5.11) to let q quit the cut (−∞, q1],
while remaining in H−q . Then to this q corresponds a point p ∈ GcH+

q
satisfying

P1 ◦Q1(p) = p, which leads to equation (5.13). 2

5.7. Reformulation as a reflected Brownian motion in a β-cone

Let β be the angle in (π, 2π) such that cosβ = −ρ/σ, that is

β = 2π − arccos(−ρ/σ) ∈ (π, 2π).
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The simple linear mapping

T
def
=

1√
σ

( 1
sin β cotβ

0 1

)
given in the appendix of [17] transforms the reflected Brownian motion Z of
covariance matrix Σ in the three-quarter plane into a Brownian motion in a
non-convex cone of angle β, with identity covariance matrix and with two equal
reflection angles δ such that

tan δ =
sinβ

r + cosβ
. (5.14)

Proposition 5.11. The process TZ̃ is a reflected Brownian motion in a cone
of angle β/2 and reflection angle ε = π/2 and δ ∈ (0, π) defined in (5.14), see
Figure 5.1.

Proof. The Brownian motion Z̃ has the covariance matrix(
σ̃1 ρ̃
ρ̃ σ̃2

)
=

(
2(σ − ρ) (σ − ρ)
(σ − ρ) σ

)
,

see Proposition (5.3). Let

β̃ = arccos

(
− ρ̃√

σ̃1σ̃2

)
= arccos

(
−
√

1

2

(
1− ρ

σ

))

the angle associated to the new kernel U . In particular, β̃ ∈ (π2 , π), and we have

cos2 β̃ =
1 + cosβ

2
,

whence
cosβ = cos 2β̃ and β = 2β̃,

see also [35, Lem. 10] and [28]. Then the new reflection matrix is equal to(
1 r̃2

r̃1 1

)
def
=

(
1 1− r

1/2 1

)
.

Performing the same change of variables as in the appendix of [17], this

equation amounts to studying a Brownian motion in a wedge of angle β̃, identity
covariance matrix and reflection angles

tan ε =
sin β̃

r̃1

√
σ̃1/σ̃2 + cos β̃

and tan δ =
sin β̃

r̃2

√
σ̃2/σ̃1 + cos β̃

.
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Then we get

tan ε =∞, i.e., ε = π/2 and tan δ =
2 cos β̃ sin β̃

r − 1 + 2 cos2 β̃
=

sinβ

r + cosβ
. (5.15)

2

5.8. Algebraic nature of the Laplace transform

For reflected Brownian motion in a quadrant, the work [3] proposes an ex-
haustive classification of the parameters (drift, opening of the cone and reflec-
tion angles), allowing to decide which of the following classes of functions the

associated Laplace transform L̃1(p, q) belongs to:

(C1) Rational

(C2) Algebraic

(C3) D-finite (D for Differentially) (by this, we mean that the Laplace transform
satisfies two linear differential equations with coefficients in R(p, q), one in
p and one in q)

(C4) D-algebraic (that is, when it satisfies a polynomial differential equation in
p, and another in q)

(C5) D-transcendental (when it is non-D-algebraic)

Notice that the classes (C1) to (C4) define a hierarchy, in the sense that

(C1) ⊂ (C2) ⊂ (C3) ⊂ (C4).

A more probabilistic description of the models having a Laplace transform in
the class (C1) above is as follows:

• The skew symmetric condition: ε + δ = π, which is a necessary and
sufficient condition for the stationary distribution to be exponential, see
[22].

• The Dieker and Moriarty [7] criterion: ε + δ − π ∈ −βN, which is a
necessary and sufficient condition for the stationary distribution to be a
sum of exponential terms.

Accordingly, we may transfer the classification of [3] to our symmetric Brow-
nian motion in a three-quarter plane, via its projection in the domain S1 and
its quadrant description Z̃. Then the following proposition holds.

Proposition 5.12. The Laplace transform of the reflected Brownian motion in
the quarter plane Z̃ is never rational (class (C1)). However, there exist values

of parameters such that L̃ is D-algebraic, D-finite or algebraic.
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Before proving Proposition 5.12, let us do some remarks:

• As a consequence, there is no skew symmetry in the three-quarter plane
(nor Dieker and Moriarty condition). From this point of view, Brownian
motion in non-convex cones is deeply different from Brownian motion in
convex cones.

• The above feature (absence of skew symmetry) admits a clear interpre-
tation in terms of the growth of exponential functions in R2. Indeed, for
(a, b) 6= (0, 0), an exponential function

(p, q) 7→ exp(−ap− bq) (5.16)

tends to infinity in half of the directions of R2, so such an exponential func-
tion (and any finite linear combination of exponential functions as well)
will never be integrable on a non-convex domain. As a direct consequence,
it cannot represent any stationary distribution.

• The example presented in Figure 1.4 (see (1.1)) has an algebraic Laplace
transform, as computed in [3]. It appears as the simplest example which
one may construct in a non-convex wedge.

Proof of Proposition 5.12. The skew symmetric condition is

2ρ̃ = r̃1σ̃1 + r̃2σ̃2,

or
σ − ρ = (1/2)(σ − ρ) + (1− r)σ/2,

which yields r = ρ/σ < 1. Hence, as the recurrence conditions imply r > 1, we
can conclude that the skew symmetric case is not possible. More generally the
Dieker and Moriarty condition

ε+ δ − π ∈ −Nβ̃

cannot hold, because ε + δ − π = δ − π/2 > 0. However, there exist some
parameters such that

π/2 + δ ∈ β̃Z+ πZ,

which is exactly condition [3] to admit a D-algebraic Laplace transform. 2

5.9. Line of steepest descent of π

In the symmetric case, we remarked that the Laplace transform of the normal
derivative of π along the diagonal is zero and then n(x, y) = 0, see (3.2). Thus
we may formulate the following question, in the non-symmetric case: does there
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also exist a line (not necessarily the diagonal) along which the normal derivative
of π is zero?

Let us consider the steepest descent line of π starting from (0, 0). In other
words, we consider that π is a potential and we are looking to the field line of
grad π passing through (0, 0). This defines the curve

C = {(z1(t), z2(t)) : t ∈ R+},

where (z1(0), z2(0)) = (0, 0) and
z′1(t) =

∂π

∂z1
(z1(t), z2(t)),

z′2(t) =
∂π

∂z2
(z1(t), z2(t)).

If we divide the three-quarter plane along this line, we obtain a functional
equation with only two unknown functions. We focus on a few examples where
the curve C is a simple half-line:

• In the symmetric case studied in Section 5, the curve C is simply the first
diagonal.

• In the special case of Figure 1.4, the curve C is the half-line starting from
the origin and following the direction of the drift.

• In the quadrant, when the skew symmetric condition is satisfied, the sta-
tionary distribution has an exponential density of the form (5.16) (up to
a normalization constant), and the curve C is also a half-line of direction
−(a, b).

Appendix A. Proof of Proposition 3.1

Proof. Let us introduce the three following sets

Sε1
def
= {(z1, z2) : z2 > z1 + ε/

√
2 and z2 > 0},

Sε2
def
= {(z1, z2) : z1 > z2 + ε/

√
2 and z1 > 0}

and S̃ε
def
= S \ (Sε1 ∪ Sε2). Then, we define the function Iε such that

Iε(z1, z2)
def
=


1 if z ∈ Sε1 ,
z2 − z1√

2ε
+

1

2
if z ∈ S̃ε,

0 if z ∈ Sε2 .

(A.1)
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From now on, we will often omit to note the variables (z1, z2). We have

∇Iε =

(
∂Iε
∂z1

,
∂Iε
∂z2

)
=

{
(0, 0) if z ∈ Sε1 ∪ Sε2 ,(
−1√
2ε
, 1√

2ε

)
if z ∈ S̃ε,

and, for all z ∈ S,

∂2Iε
∂z2

1

=
∂2Iε
∂z2

2

= − ∂2Iε
∂z1∂z2

=
1√
2ε

(
δε/
√

2(z1 − z2)− δ−ε/√2(z1 − z2)
)
, (A.2)

where δa is the Dirac distribution at a. For the sake of brevity, we write

I ′ε
def
=
∂Iε
∂z2

= −∂Iε
∂z1

and I ′′ε
def
=
∂2Iε
∂z2

1

=
∂2Iε
∂z2

2

= − ∂2Iε
∂z1∂z2

.

Let us take fε
def
= exz1+yz2Iε. Its first and second derivatives are equal to

∂fε
∂z1

=

(
xIε +

∂Iε
∂z1

)
exz1+yz2 ,

∂fε
∂z2

=

(
yIε +

∂Iε
∂z2

)
exz1+yz2 ,

∂2fε
∂z2

1

=

(
x2Iε + 2x

∂Iε
∂z1

+
∂2Iε
∂z2

1

)
exz1+yz2 ,

∂2fε
∂z2

2

=

(
y2Iε + 2y

∂Iε
∂z2

+
∂2Iε
∂z2

2

)
exz1+yz2 ,

∂fε
∂z1∂z2

=

(
xyIε + x

∂Iε
∂z2

+ y
∂Iε
∂z1

+
∂2Iε
∂z1∂z2

)
exz1+yz2 .

Therefore, the generator at fε is given by

Gfε =

(
K(x, y)Iε +

(∂K
∂y
− ∂K

∂x

)
I ′ε +

1

2

(∂2K

∂x2
+
∂2K

∂y2
− 2

∂2K

∂x∂y

)
I ′′ε

)
× exz1+yz2 ,

that is,

Gfε =
(
K(x, y)Iε +

(
σ2y − σ1x− ρ(y − x) + µ2 − µ1

)
I ′ε +

1

2
(σ1 + σ2 − 2ρ)I ′′ε

)
× exz1+yz2 .

We also have

R1 · ∇fε(z1, 0) =
(
(r1x+ y)Iε + (1− r1)I ′ε

)
exz1 ,
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R2 · ∇fε(0, z2) =
(
(x+ r2y)Iε + (r2 − 1)I ′ε

)
eyz2 .

Now we apply the basic adjoint relationship of Proposition 2.1 to fε (which
can be written as the difference of two convex functions and therefore satisfies
the hypotheses of Proposition 2.1). Since all integrals converge, as fε and its
derivatives are bounded in S for all (x, y) in {<(x) > 0, <(x+ y) 6 0}, we
obtain

0 = K(x, y)

∫
S

Iε(z1, z2)exz1+yz2π(z1, z2)dz1dz2

+
(
σ2y − σ1x− ρ(y − x) + µ2 − µ1

) ∫
S

I ′ε(z1, z2)exz1+yz2π(z1, z2)dz1dz2

+
1

2
(σ1 + σ2 − 2ρ)

∫
S

I ′′ε (z1, z2)exz1+yz2π(z1, z2)dz1dz2 (A.3)

+ (r1x+y)

∫ 0

−∞
Iε(z1, 0)exz1ν1(z1)dz1 + (1−r1)

∫ 0

−∞
I ′ε(z1, 0)exz1ν1(z1)dz1

+ (x+r2y)

∫ 0

−∞
Iε(0, z2)eyz1ν2(z2)dz2 + (r2−1)

∫ 0

−∞
I ′ε(0, z2)eyz2ν1(z2)dz2.

Since lim
ε→0

Iε = 1S1
, the dominated convergence theorem implies that:

lim
ε→0

∫
S

Iε(z1, z2)exz1+yz2π(z1, z2)dz1dz2 =

∫
S1

exz1+yz2π(z1, z2)dz1dz2 = L(x, y),

lim
ε→0

∫ 0

−∞
Iε(z1, 0)exz1ν1(z1)dz1 =

∫ 0

−∞
exz1ν1(z1)dz1 = `1(x),

lim
ε→0

∫ 0

−∞
Iε(0, z2)eyz2ν2(z2)dz2 = 0.

We also have lim
ε→0

I ′ε(z1, z2) = δ0(z2− z1), then by continuity of π, ν1 and ν2, we

obtain the limits:

lim
ε→0

∫
S

I ′ε(z1, z2)exz1+yz2π(z1, z2)dz1dz2 =

∫ ∞
0

e(x+y)zπ(z, z)dz = m(x+ y),

lim
ε→0

∫ 0

−∞
I ′ε(z1, 0)exz1ν1(z1)dz1 = ν1(0),

lim
ε→0

∫ 0

−∞
I ′ε(0, z2)eyz2ν2(z2)dz2 = ν2(0).

Our next goal is to show that

lim
ε→0

∫
S

I ′′ε (z1, z2)exz1+yz2π(z1, z2)dz1dz2 =
1

2
n(x+ y) +

1

2
(x− y)m(x+ y).
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To this end, we introduce the linear change of variables

(z1, z2)
def
= ϕ(u, v) =

(
u− v√

2
,
u+ v√

2

)
,

(u, v) = ϕ−1(z1, z2) =

(
z1 + z2√

2
,
z2 − z1√

2

)
,

where detϕ = 1. Recall that for arbitrary constants a and c, we have δa(c×·) =
1
|c|δa/c(·). So we deduce from (A.2) the equality I ′′ε

(
ϕ(u, v)

)
= 1

2

(
δ− ε

2
− δ ε

2

)
(v).

Let us define

g(u, v)
def
= e

xu−v√
2

+y u+v√
2 π

(
u− v√

2
,
u+ v√

2

)
.

We have∫
S

I ′′ε (z1, z2)exz1+yz2π(z1, z2)dz1dz2 =
1

2ε

∫
ϕ−1(S)

(
δ− ε

2
− δ ε

2

)
(v) g(u, v)dudv

=
1

2ε

∫ ∞
−ε/2

(
g
(
u,−ε

2

)
− g
(
u,
ε

2

))
du

−→
ε→0

−1

2

∫ ∞
0

∂g

∂v
(u, 0)du

=
1

2

∫ ∞
0

e(x+y)z

(
∂π

∂z1
− ∂π

∂z2

)
(z, z)dz

+
1

2
(x− y)

∫ ∞
0

e(x+y)zπ(z, z)dz.

Finally, letting ε→ 0 in (A.3) concludes the proof. 2

Notice that in the proof of Proposition 3.1, the particular expression (A.1)
is not at all crucial: any similar function with the desired properties would have
been suitable.
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