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Abstract
We consider a transient Brownian motion reflected obliquely in a two-dimensional
wedge. A precise asymptotic expansion of Green’s functions is found in all directions.
To this end, we first determine a kernel functional equation connecting the Laplace
transforms of the Green’s functions. We then extend the Laplace transforms analyti-
cally and study its singularities. We obtain the asymptotics applying the saddle point
method to the inverse Laplace transform on the Riemann surface generated by the
kernel.

Keywords Green’s function · Semi-martingale reflected Brownian motion · Exact
asymptotics · Saddle-point method · Martin boundary
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1 Introduction

Context Since its introduction in the 1980s, reflected Brownian motion in a cone has
been extensively studied [29, 31, 45], particularly due to its deep links with queuing
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Queueing Systems

systems as an approximate model in heavy traffic [27, 41]. Seminal work has deter-
mined the recurrent or transient nature of this process in dimension two [34, 46] and
in higher dimensions [3, 4, 6, 8]. The literature on the stationary distribution in the
recurrent case, in particular the study of the asymptotics, is wide and vast [10, 11, 23,
28, 40, 42]. Numerical methods have been explored in [7, 9] and explicit expressions
for the stationary density have been given in [1, 2, 12, 19, 21, 24, 25, 33]. The tran-
sient case, which is less studied, is also considered by several articles which study the
escape probability along the axes [20], the absorption probability at the vertex [15,
26], or the corresponding Green’s functions [14, 22].

In this article, we consider a transient obliquely reflected Brownian motion in a
cone of angle β ∈ (0, π) with two different reflection laws from two boundary rays
of the cone. We denote by g̃(ρ cos(ω), ρ sin(ω)) the Green’s function of this process
in polar coordinates; Green’s functions are used to study the distribution of time that
the process spends at a point on the cone. The article determines the asymptotics of
g̃(ρ cos(ω), ρ sin(ω)) as ρ → ∞ and ω → ω0 for any given angle ω0 ∈ [0, β]. See
Theorem 1 when ω0 ∈ (0, β) and Theorem 2 when ω0 = 0 or β. This extends results
of [14] in two aspects. Firstly, asymptotic results are obtained in any convex two-
dimensional cone with two different reflection laws from its boundaries. While in [14]
the authors are able to easily calculate an explicit Laplace transform of the Green’s
function for the half plane, the same is certainly not true for RBM in the cone. Laplace
transforms of Green functions in this case are expressed in [22] in terms of integrals
as solutions of Riemann boundary problems. Secondly, Theorem 1 provides Green
function’s asymptotics for any direction of the cone and not only along straight rays
as in [14], namely when the angle ω above tends to a given angle ω0. The asymptotics
depend on the rate of convergence of ω → ω0 and enables us to determine the Martin
boundary of the process.

In [23] the asymptotics of the stationary distribution for recurrent Brownian motion
in a cone is found along all regular directions ω0 ∈ (0, β), while some special direc-
tions ω0 were left open for future work. The asymptotics are obtained by studying the
singularities and applying the saddle point method to the inverse Laplace transform of
the stationary distribution. This article applies the approach of [23] to Green’s func-
tions and provides new techniques which enable us to treat all special directions where
the asymptotics depend of the convergence rate of ω to ω0 rather to that of r tending
towards infinity. This is the case when ω0 = 0 or β (see Theorem 2), and also when
the saddle point meets a pole of the boundary Laplace transform (see Theorem 3).

The tools used in this paper are inspired by methods introduced by Malyshev [39],
who studied the asymptotic of the stationary distribution for random walks in the
quarter plane. Articles studying asymptotics in line with Malshev’s approach include
[36], which studies the Martin boundary of random walks in the quadrant; [37], which
extends these methods to the join-the-shorter-queue issue; and [35], which studies
the asymptotics of the occupation measure for random walks in the quarter plane
with drift absorbed at the axes. Fayolle and Iasnogorodski [16] also developed a
method to determine explicit expressions for generating functions using the Riemann
and Carleman boundary value problems. Then, in the seminal book [17], Fayolle,
Iansogorodski and Malyshev merged their analytic approach for random walks in the
quadrant. The work [23] was the first to extend their approach to continuous stochastic
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Fig. 1 The cone of angle β, the
reflection angles δ and ε and the
drift μ̃ with its direction θ . The
point z̃ with polar coordinates ρ

and ω is displayed

processes in the quadrant to compute asymptotics of stationary distributions, and [14]
was the first one to study the asymptotics of Green’s functions using this analytic
approach.

Main results We consider an obliquely reflected standard Brownian motion in a
cone of angle β ∈ (0, π) starting from z̃0, with reflection angles δ ∈ (0, π) and
ε ∈ (0, π) and of drift μ̃ of angle θ ∈ (0, β) with the horizontal axis, see Fig. 1. We
assume that

δ + ε < β + π.

This well known condition ensures that the process is a semi-martingale reflected
Brownian motion [47, 48]. The reflected Brownian motion will be properly defined
in the next section. The process is transient since we have assumed that θ ∈ (0, β)

which means that the drift belongs to the cone. If we assume that p̃t is the transition
probability of this process, the Green’s function is defined for z̃ inside the cone by

g̃(̃z) =
∫ ∞

0
p̃t (z̃0, z̃)dt . (1.1)

For ω ∈ (0, β) and ρ > 0 we will denote z̃ = (ρ cosω, ρ sinω) the polar coordi-
nates in the cone. Note that the tilde symbol̃ stands for quantities linked to the standard
reflected Brownian motion in the β-cone. The same notation without the tilde symbol
will stand for the corresponding process in the quadrant R2+.

In the next remark we explain how to go from a standard Brownianmotion reflected
in a convex cone to a reflectedBrownianmotion reflected in a quadrant by adjusting the
covariance matrix. This will be useful because our strategy of proof is to first establish
our results in the quadrant for a general covariance matrix, and then to extend the
results to all convex cones. The proof of the main Theorems 1, 2 and 3 stated below in
the case of a cone can be found at the very end of Sect. 11 and are based on Theorems
4, 5 and 6, which determine the asymptotics in the case of a quadrant.

Remark 1.1 (Equivalence between cones and quadrant) There is a bijective equiva-
lence between the following two families of models:

• Standard reflected Brownian motions (i.e. identity covariance matrix) in any con-
vex cone of angle β ∈ (0, π),
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• Reflected Brownian motions in a quadrant of any covariance matrix of the form

(

1 − cosβ

− cosβ 1

)

.

In Sect. 11 this equivalence is established by means of a simple linear transformation
defined in (11.2). Therefore, all the results established for one of these two families
can be applied directly to the other family.

Furthermore, any reflected Brownian motion in a general convex cone and with a
general covariance matrix can always be reduced via a simple linear transformation
to a Brownian motion of one of the two families of models mentioned above (see
Remark 1.3 below).

Before presenting our results inmore detail, we pause tomake the following remark.

Remark 1.2 (Notation) Throughout this article, we will use the symbol∼ to express an
asymptotic expansion of a function. If for some functions f and gk we state that f (x) ∼
∑n

k=1 gk(x) when x → x0, then gk(x) = o(gk−1(x)) and f (x) − ∑n
k=1 gk(x) =

o(gn(x)) when x → x0.

We now state the main result of the article. We define the angles

ω∗ := θ − 2δ and ω∗∗ := θ + 2ε.

Note that ω∗ < θ < ω∗∗.

Theorem 1 (Asymptotics in the general case)We consider a standard reflected Brow-
nian motion in a wedge of opening β, with reflection angles δ and ε and a drift μ̃ of
angle θ (see Fig. 1). Then, the Green’s function g̃(ρ cosω, ρ sinω) of this process has
the following asymptotics when ω → ω0 ∈ (0, β) and ρ → ∞, for all n ∈ N:

• If ω∗ < ω0 < ω∗∗ then

g̃(ρ cosω, ρ sinω) ∼
ρ→∞
ω→ω0

e
−2ρ|μ̃| sin2

(

ω−θ
2

)

1√
ρ

n
∑

k=0

c̃k(ω)

ρk
. (1.2)

• If ω0 < ω∗ then

g̃(ρ cosω, ρ sinω) ∼
ρ→∞
ω→ω0

c∗e−2ρ|μ̃| sin2(ω+δ−θ) +e
−2ρ|μ̃| sin2

(

ω−θ
2

)

1√
ρ

n
∑

k=0

c̃k(ω)

ρk
.

(1.3)
• If ω∗∗ < ω0 then

g̃(ρ cosω, ρ sinω) ∼
ρ→∞
ω→ω0

c∗∗e−2ρ|μ̃| sin2(ω−ε−θ)+e
−2ρ|μ̃| sin2

(

ω−θ
2

)

1√
ρ

n
∑

k=0

c̃k(ω)

ρk
.

(1.4)
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Fig. 2 Asymptotics of the Green’s function determined in Theorem 1 according to the direction ω0: four
different cases according to the value of angles ω∗ = θ − 2δ and ω∗∗ = θ + 2ε.When ω0 belongs to the
gray region, the asymptotics are given by (1.2); in the purple region, they are given by (1.3); in the orange
region, they are given by (1.4) (Color figure online)

where c∗ and c∗∗ are positive constants and ck(ω) are constants depending on ω such
that c̃k(ω) −→

ω→ω0
c̃k(ω0).

There are four cases which are illustrated by Fig. 2.
Our second result states the asymptotics along the edges when ω → 0 or ω → β.

Theorem 2 (Asymptotics along the edges)Wenowassume thatω0 = 0and letρ → ∞
and ω → ω0 = 0. In this case, we have c̃0(ω) ∼

ω→0
c′ω and c̃1(ω) ∼

ω→0
c′′ for some

non-negative constants c′ and c′′ which are non-null when ω∗ < 0. Then, the Green’s
function g̃(ρ cosω, ρ sinω) has the following asymptotics:

• When ω∗ < 0 the asymptotics are still given by (1.2). In particular, we have

g̃(ρ cosω, ρ sinω) ∼
ρ→∞
ω→0

e
−2ρ|μ̃| sin2

(

ω−θ
2

)

1√
ρ

(

c′ω + c′′

ρ

)

.

• When ω∗ > 0 the asymptotics given by (1.3) remain valid. In particular, we have

g̃(ρ cosω, ρ sinω) ∼
ρ→∞
ω→0

c∗e−2ρ|μ̃| sin2(ω+δ−θ).

where c∗ is the same constant as in Theorem 1.

Therefore, when ω∗ < 0, there is a competition between the two first terms of the sum
∑n

k=0
c̃k (ω)

ρk to know which one is dominant between c′ω and c′′
ρ
. More precisely:
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• If ρ sinω −→
ρ→∞
ω→0

∞ then the first term is dominant.

• If ρ sinω −→
ρ→∞
ω→0

c > 0 then both terms contribute and have the same order of

magnitude.
• If ρ sinω −→

ρ→∞
ω→0

0 then the second term is dominant.

A symmetric result holds when we take ω0 = β. The asymptotics are given by (1.2)
when β < ω∗∗ and by (1.4) when ω∗∗ < β. The first two terms of the sum compete to
be dominant, and this depends on the limit of ρ sin(β − ω).

We will explain later in Propositions 11.1 and 11.2 that ω∗ and ω∗∗ correspond in
some sense to the poles of the Laplace transforms of the Green’s functions and that ω
corresponds to the saddle point obtained when we will take the inverse of the Laplace
transform. Our third result states the asymptotics when the saddle point meets the
poles, which occurs when ω → ω∗ or ω → ω∗∗.

Throughout, we let 
(z) := 2√
π

∫ z
0 exp(−t2)dt .

Theorem 3 (Asymptotics when the saddle point meets a pole) We now assume that
ω0 = ω∗ = θ − 2δ and let ω → ω∗ and ρ → ∞. Then, the Green’s function
g̃(ρ cosω, ρ sinω) has the following asymptotics:

• When ρ(ω − ω∗)2 → 0 the asymptotics are given by (1.3) with the constant c∗ of
the first term has to be replaced by 1

2c
∗.

• When ρ(ω − ω∗)2 → c > 0 for some constant c then:

– If ω < ω∗ the asymptotics are still given by (1.3) with the constant c∗ of the
first term has to be replaced by 1

2c
∗(1 + 
(

√
cA)) for some constant A.

– If ω > ω∗ the asymptotics are still given by (1.3) with the constant c∗ of the
first term has to be replaced by 1

2c
∗(1 − 
(

√
cA)) for some constant A.

• When ρ(ω − ω∗)2 → ∞ then:

– If ω < ω∗ the asymptotics are given by (1.3)
– If ω > ω∗ the asymptotics are given by (1.2) and we have c̃0(ω) ∼

ω→ω∗
c

ω−ω∗

for some constant c.

A symmetric result holds when we assume that ω0 = ω∗∗ = θ + 2ε.

These main asymptotic results are very similar to those obtained in the article
[23] on the stationary distribution in the recurrent case when the drift points towards
the apex of the cone. This makes sense given that the Green’s functions and the
stationary distribution measure the time or proportion of time that the process spends
at a point. However, the analysis of Green’s functions is more complex because of
their dependence on the initial state of the process.

In the three previous theorems,we considered aBrownianmotionwhich is standard,
i.e. of covariancematrix identity. But all the results stated abovemay easily be extended
to all covariance matrices by the the simple linear transformation mentioned in the
previous remark. The next remark explains how to proceed, in line with what is stated
in Sect. 11.
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Remark 1.3 (Generalisation to any covariance matrix in any convex cone) Consider ̂Zt

an obliquely reflected Brownian motion in a cone of angle ̂β0 ∈ (0, π) starting from
ẑ0, with reflection angleŝδ and ε̂, of drift μ̂ of anglêθ and of covariance matrix ̂�. We

introduce the angle ̂β1 := arccos
(

− σ̂12√
σ̂11σ̂22

)

∈ (0, π) and the linear transformation

̂T :=
⎛

⎝

1

sin ̂β1
cot ̂β1

0 1

⎞

⎠

⎛

⎜

⎝

1√
σ̂11

0

0
1√
σ̂22

.

⎞

⎟

⎠

Then, the process ˜Zt := ̂T̂Zt is an obliquely reflected standard Brownian motion in
a cone of angle β ∈ (0, π) starting from z̃0 := ̂T ẑ0, with reflection angles δ and ε and
of drift μ̃ := ̂T μ̂ of angle θ . The angle parameters are in (0, π) and are determined
by

tan β = sin ̂β1

1
tan ̂β0

√

σ̂22
σ̂11

+ cos ̂β1

tan θ = sin ̂β1

1
tan̂θ

√

σ̂22
σ̂11

+ cos ̂β1

tan δ = sin ̂β1

1
tan̂δ

√

σ̂22
σ̂11

+ cos ̂β1

tan(β − ε) = sin ̂β1

1
tan(̂β0−̂ε)

√

σ̂22
σ̂11

+ cos ̂β1

.

The linear transformation ̂T gives the following relation between the Green’s func-
tion of ̂Zt denoted by ĝ(̂z) for ẑ inside the cone of angle ̂β0 and the Green’s function
of ˜Zt denoted by g̃(̃z) for z̃ inside the cone of angle β:

ĝ(̂z) = 1√
det ̂�

g̃(̂T ẑ).

Therefore, the previous formula allows us to extend our results from g̃ to ĝ.

The following remark concerns the Martin boundary.

Remark 1.4 (Martin boundary) The Martin boundary associated to this process can
be computed from the asymptotics of the Green’s function obtained in the previous
theorems. The corresponding harmonic functions can also be obtained utilizing the
the constants of the dominant terms of the asymptotics. See Section 6 of [14] which
briefly reviews some elements of this theory in a similar context.

Plan and strategy of proof

In this article, the results will be first established in a quadrant for any covariance
matrix and then will be extended to a cone in the last section.

The first step in solving our problem is to determine a functional equation relat-
ing the Laplace transforms of Green’s functions in the quadrant and on the edges
(see Sect. 2). In Sect. 3, we continue to study these Laplace transforms, in particular
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their singularities. Then, we use the inversion Laplace transform formula combined
with the functional equation to express the Green’s functions as a sum of simple
integrals (see Sect. 4). To determine the asymptotics, we first use complex analysis
to obtain Tauberian results, which links the poles of the Laplace transforms to the
asymptotics of the Green’s functions. Then, we use a double refinement of the clas-
sical saddle-point method: the uniform method of the steepest descent. One of the
reference books on this classical approach is that of Fedoryuk [18]. Appendix A,
which gives a generalized version of the classical Morse Lemma by introducing a
parameter dependency, will be useful in understanding the refinement of the saddle-
point method. Section 5 studies the saddle point and Sect. 6 explains how we shift
the integration contour, thus determining the contribution of the encountered poles
to the asymptotics. Section7 identifies which parts of the new integration contour are
negligible. Section8 establishes the contribution of the saddle point to the asymptotics
and states the main result. Section9 studies the asymptotics along axes and Sect. 10
studies the asymptotics in the case where the saddle point meets a pole. Appendix B
states a technical result useful to this section. Finally, Sect. 11 explains how to transfer
the asymptotic results obtained in the quadrant to any convex cone and thus concludes
the proof of Theorems 1, 2 and 3.

2 Convergence of Laplace transforms and functional equation

Transient reflected Brownianmotion in a cone

Let (Zt )t≥0 = (z0 + μt + Bt + RLt )t≥0 be a (continuous) semimartingale
reflected Brownian motion (SRBM) in R

2+ on a filtered probability space where
μ = (μ1, μ2)


 ∈ R
2 is the drift, � is the covariance matrix associated to the

Brownian motion B, R = (ri j )1�i, j�2 ∈ R
2×2 is the reflection matrix, and

(Lt )t≥0 = ((L1
t , L

2
t )


)t≥0 is the bivariate local time on the edges associated to the
process. We will assume that det(�) > 0, i.e. that � is positive-definite. See Fig. 3
to visualize the parameters of this process. We recall the following classical result
concerning the existence of such a process, see for example [43, 47].

Proposition 2.1 (Existence and uniqueness of SRBM) There exists an SRBM with
parameters (μ,�, R) if and only if � is a covariance matrix and R is completely-S,
i.e.

r11 > 0, r22 > 0, and [ det(R) > 0 or r21, r12 > 0 ]. (2.1)

In this case, the SRBM is unique in law and defines a Feller continuous strong Markov
process.

Condition (2.1) will therefore be required throughout the article. The recurrence
and transience conditions of those processes are well known, see [34, 46]. In our case,
the SRBM will be transient because of the following assumption of positive drift,
which we assume to hold throughout the sequel.

Assumption 1 (Positivity of the drift) We assume that μ1 > 0 and μ2 > 0.
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Fig. 3 SRBM parameters in the
quadrant: drift μ, reflection
vectors R1 and R2 and
covariance matrix �

Note that this assumption is equivalent to that made in the introduction: θ ∈ (0, β).
Under Assumption 1, the reflected Brownian motion is transient by [34].

Green’s function

As in (1.1), recall that the Green’s measure G inside the quadrant is defined by

G(z0, A) := Ez0

[∫ ∞

0
1A(Zt )dt

]

for z0 ∈ R
2+ and A ⊂ R

2. For i ∈ {1, 2}, we define Hi the Green’s measures on the
edges of the quadrant by

Hi (z0, A) := Ez0

[∫ ∞

0
1A(Zt )dL

i
t

]

.

The measure H1 has its support on the vertical axis and H2 has its support on the
horizontal axis.

Proposition 2.2 Green measures G (resp. H1, H2) have densities g (resp. h1, h2) with
respect to the two dimensional (resp. one dimensional) Lebesgue measure.

We then have G(z0, A) = ∫

A g(z)dz for A ⊂ R
2, H1(z0, B × {0}) = ∫

B h1(z)dz for
B ⊂ R and H2(z0, {0} × C) = ∫

C h2(z)dz for C ⊂ R.
In the sequel it should be kept in mind that in the notations g and hi we have omitted

the dependence on the starting point z0.

Proof In the recurrent case, Harrison and Williams proved in [32] that the invariant
measure has a density with respect to the Lebesgue measure. The proof in that article
extends to the transient case and justifies the existence of a density with respect to the
Lebesgue measure for the Green’s measures. Indeed, the proof of Lemma 9 of section
7 in [32] shows that for a Borel set A of Lebesgue measure 0, we have

E

[∫ +∞

0
1A(Zt )dt

]

= 0.

This is even an equivalence, although we will not need it in the present article. Since
the proof does not require the recurrence property, this gives the desired result by
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the Radon Nikodym theorem. The same argument applies to the densities of Hi for
i = 1, 2, see theorem 1, section 8 in [32].

In the following, we denote R+ = [0,∞) and R
∗+ = (0,∞).

Remark 2.3 (Partial differential equation) Let us denote L = 1
2∇ · �∇ + μ · ∇ the

generator of the SRBM inside the quadrant and L∗ = 1
2∇ · �∇ − μ · ∇ its dual

operator. Then, the Green’s function g satisfies

L∗g = −δz0

in the sense of distributions D′((R∗+)2).
Let us define the matrix R∗ = 2� − R diag(R)−1diag(�). We denote R∗

1 and R∗
2

the two columns of R∗. Then, the following boundary conditions hold

{

∂R∗
1
g(z) − 2μ1g(z) = 0 for z ∈ {0} × R+

∂R∗
2
g(z) − 2μ2g(z) = 0 for z ∈ R+ × {0}

where ∂R∗
i

= R∗
i · ∇.

Sketch of proof of the remark The partial differential equation of the Green’s function
and its boundary conditions are derived from the forward equation of the transition
kernel established in [29], see Equation (8.3). However, we provide here a direct
elementary proof of the fact that L∗g = −δz0 . Let ϕ ∈ C∞

c ((R∗+)2). Applying Ito’s
formula and taking expectations, we obtain

E[ϕ(Zt )] = ϕ(z0) + E

[∫ t

0
Lϕ(Zs)ds

]

.

One may remark that there are no boundary terms since the functions ϕ will cancel
on a neighborhood of the boundaries. Since we are in the transient case and since
ϕ is bounded, the left term converges to 0 as t tends towards infinity by the domi-
nated convergence theorem. Since successive derivatives of ϕ are bounded, Lϕ(a, b)
is bounded by an exponential function up to a multiplication constant. Due to the con-
vergence domain of the Laplace transform (see Proposition 2.6 below), we obtain by

dominated convergence that ϕ(z0) = −E

[

∫ +∞
0 Lϕ(Zs)ds

]

= − ∫

R
2+ Lϕ(z)g(z)dz

which implies that L∗g = −δz0 .

Furthermore, it is preferable to have continuity of the Green’s function when investing
their asymptotic behaviour. This is the content of the following comment.

Remark 2.4 (Smoothness of Green’s functions) By the strictly elliptic regularity the-
orem (see for instance the Hypoelliptic theorem 5.1 in [30]), we may deduce from
L∗g = −δz0 that the density g has a C∞ version on (0,+∞)2\{z0}. We will not go
into more detail here about the proof of this result. In the remainder of this article, we
will assume that g is continuous on [0,+∞)2\{0, z0}.
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Laplace transform and functional equation

Definition 2.5 (Laplace transform of Green’s functions) For (x, y) ∈ C
2 we define

the Laplace transforms of the Green’s measures by

ϕ(x, y) := Ez0

[∫ ∞

0
e(x,y)·Zt dt

]

=
∫

R
2+
e(x,y)·zg(z)dz

and

ϕ1(y) := Ez0

[∫ ∞

0
e(x,y)·Zt dL1

t

]

=
∫

R+
eybh1(b)db,

ϕ2(x) := Ez0

[∫ ∞

0
e(x,y)·Zt dL2

t

]

=
∫

R+
exah2(a)da.

Let us remark that ϕ1 does not depend on x and ϕ2 does not depend on y. Recall the
dependence on the starting point z0 even though it is omitted in the notation.

Since Green’s measures are not probability measures, the convergence of their
Laplace transforms are not guaranteed. For example, ϕ(0) is not finite. Convergence
domains for Laplace transforms of Green’s functions have been studied in [22] but
we need stronger results. The following proposition establishes the convergence when
the real parts of x and y are negative.

Proposition 2.6 (Convergence of the Laplace transform) Assuming that μ1 > 0 and
μ2 > 0,

• ϕ1(y) converges (at least) on y ∈ {y ∈ C,
(y) < 0}
• ϕ2(x) converges (at least) on x ∈ {x ∈ C,
(x) < 0}
• ϕ(x, y) converges (at least) on (x, y) ∈ {(x, y) ∈ C

2,
(x) < 0 and 
(y) < 0}.
Before proving this proposition, we state the functional equation that will be central
in this article. First, we need to define for (x, y) ∈ C

2 the following polynomials

⎧

⎪

⎨

⎪

⎩

γ (x, y) = 1
2 (x, y) · �(x, y) + (x, y) · μ = 1

2 (σ11x
2 + 2σ12xy + σ22y

2) + μ1x + μ2y

γ1(x, y) = R1 · (x, y) = r11x + r21y

γ2(x, y) = R2 · (x, y) = r12x + r22y

where R1, R2 are the two columns of the reflection matrix R. The polynomial γ is
called the kernel.

Proposition 2.7 (Functional equation) If 
(x) < 0 and 
(y) < 0, then

− γ (x, y)ϕ(x, y) = γ1(x, y)ϕ1(y) + γ2(x, y)ϕ2(x) + e(x,y)·z0 . (2.2)

The proofs of these two proposition are directly related, so we will prove both
together.
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Proof of Propositions 2.6 and 2.7 The main idea of the proof is to take the expectation
of Itô’s formula applied to the SRBM and to use a sign argument to justify the limit
when t → +∞. The beginning of the proof is inspired by the Proposition 5 of [22].

Letting (x, y) ∈ (R∗−)2, Itô’s formula applied to f (z) := e(x,y)·z gives

f (Zt ) − f (z0) =
∫ t

0
∇ f (Zs ).dBs +

∫ t

0
L f (Zs )ds +

2
∑

i=1

∫ t

0
Ri · ∇ f (Zs )dL

i
s (2.3)

=
∫ t

0
∇ f (Zs ).dBs + γ (x, y)

∫ t

0
e(x,y)·Zs ds +

2
∑

i=1

γi (x, y)
∫ t

0
e(x,y)·Zs dLis (2.4)

where L = 1
2∇ · �∇ + μ · ∇ is the generator of the Brownian motion. Since (x, y) ∈

(R∗−)2, the integral
∫ t
0 ∇ f (Zs).dBs is a martingale (its quadratic variation is bounded

by C .t for a constant C > 0) and its expectation cancels out. Therefore,

Ez0

[

e(x,y)·Zt
]

− e(x,y)·z0 − γ (x, y)Ez0

[∫ t

0
e(x,y)·Zs ds

]

= Ez0

[

γ1(x, y)
∫ t

0
e(x,y)·Zs dL1

s + γ2(x, y)
∫ t

0
e(x,y)·Zs dL2

s

]

. (2.5)

The expectations in the left-hand side of the previous equation are finite because for
(x, y) ∈ (R∗−)2, the first expectation is bounded by 1 and the second expectation is
bounded by t . This implies that the expectation of the right-hand side is also finite.

The aim now is to take the limit of (2.5) when t goes to infinity to show
the finiteness of the Laplace transforms and the functional equation. First, since
(x, y) ∈ (R∗−)2 and ||Zt || −→

t→∞ +∞ a.s., the expectation Ex
[

e(x,y)·Zt
]

converges

toward 0 when t → ∞ by the dominated convergence theorem. Secondly, by the

monotone convergence theorem, the expectation Ez0

[

∫ t
0 e

(x,y)·Zs ds
]

converges in

[0,∞] to ϕ(x, y) = Ez0

[∫ ∞
0 e(x,y)·Zs ds

]

.
We now prove by contradiction that ϕ(x0, y0) is finite. For the sake of contra-

diction, let us assume that it is possible to choose (x0, y0) ∈ (R∗−)2 such that
γ (x0, y0) < 0, γ1(x0, y0) < 0 and γ2(x0, y0) < 0 and Ez0

[∫ ∞
0 e(x0,y0)·Zs ds

] = +∞.
Since γ (x0, y0) < 0, the left-hand side of (2.5) will be positive for large enough
t . But, since γ1(x0, y0) < 0 and γ2(x0, y0) < 0, the right-hand side of (2.5) is
always negative. We have thus obtained a contradiction, allowing us to conclude
that ϕ(x0, y0) = Ez0

[∫ ∞
0 e(x0,y0)·Zs ds

]

is finite. Hence, the limit of the right-hand
side of (2.5) is also finite and converges by the monotone convergence theorem to
γ1(x0, y0)ϕ1(y0)+γ2(x0, y0)ϕ2(x0). We deduce that ϕ1(y0) and ϕ2(x0) are also finite
and that the functional equation (2.2) is satisfied for (x0, y0). This implies that for all
x and y in C such that 
x < x0 and 
y < y0 the Laplace transforms ϕ(x, y), ϕ1(y)
and ϕ2(x) are finite and the functional equation (2.2) is satisfied by taking the limit of
(2.5) when t → ∞.

All that remains is to show that we can always choose x0 and y0 as close to 0 as we
like, such that (x0, y0) ∈ (R∗−)2, γ (x0, y0) < 0, γ1(x0, y0) < 0 and γ2(x0, y0) < 0 and
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Fig. 4 Illustration of the domain where γ1 < 0 and γ2 < 0

the proof of Propositions 2.6 and 2.7 will be complete. Let us denote by E the ellipse
of equation γ (x, y) = 0. One may observe that the interior of the ellipse E defined by
γ (x, y) < 0 contains a neighbourhood of 0 intersecting (R∗−)2 by Assumption 1 on
the positivity of the drift. Indeed, the drift is an external normal to the ellipse at (0, 0).
We consider two cases coming from the existence condition of the process (2.1). The
first case is given by r11 > 0, r22 > 0, r12 > 0 and r21 > 0 (see Fig. 4a). In this case,
one may see directly see that γ1(x, y) < 0 and γ2(x, y) < 0 on (R∗−)2. It is therefore
easy to pick (x0, y0) close enough to (0, 0) which satisfies the required conditions.
The second case is given by r11 > 0, r22 > 0 and det(R) > 0 (see Fig. 4b). In this
case, the cone defined by γ1 < 0 and γ2 < 0 has a non-empty intersection with (R∗−)2.
Hence, we can still choose (x0, y0) as close as we want to (0, 0) inside the desired
cone and the ellipse E .

Remark 2.8 (Dependency on the initial state) The main difference compared to the
recurrent case [23] comes from the additional term e(x,y)·z0 in the functional equation.
With the exception of this one term, it is coherent that Green’s functions in the transient
case have similar asymptotic behaviors that those of the stationary densities in the
recurrent case.

The following proposition follows from the functional equation and states that the
boundary Green’s densities h1 and h2 are equal, up to some constant, to the bivariate
Green’s function g on the axes.

Proposition 2.9 (Green’s densities on the boundaries) The Green’s density g is related
to the boundary Green’s densities hi by the formulas

r11h1(b) = σ11

2
g(0, b) and r22h2(a) = σ22

2
g(a, 0).
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Proof The initial value formula of a Laplace transform gives

xϕ(x, y) −→
x→−∞ −

∫ ∞

0
eybg(0, b)db.

Therefore, by dividing the functional equation (2.2) by x and taking the limit when x
tends to infinity, we obtain

1

2
σ11

∫ ∞

0
eybg(0, b)db = r11ϕ1(y) = r11

∫ ∞

0
eybh1(b)db

which implies the result.

3 Continuation and properties of '1(y) and '2(x)

The first step of the analytical approach [14, 17] is to study the kernel.

Lemma 3.1 (Kernel study)

(i) Equation γ (x, y) = 0 determines an algebraic function Y (x) [resp. X(y)] with
two branches

Y±(x) = 1

σ22

(

− σ12x − μ2 ±
√

(σ 2
12 − σ11σ22)x2 + 2(μ2σ12 − μ1σ22)x + μ2

2

)

.

The function Y (x) [resp. X(y)] has two branching points xmin and xmax [resp.
ymin and ymax] given by

xmin = μ2σ12 − μ1σ22 − √
D1

det(�)
, xmax = μ2σ12 − μ1σ22 + √

D1

det(�)
,

ymin = μ1σ12 − μ2σ11 − √
D2

det(�)
, ymax = μ1σ12 + μ2σ11 − √

D2

det(�)
,

where D1 = (μ2σ12 − μ1σ22)
2 + μ2

2 det(�) and D2 = (μ1σ12 − μ2σ11)
2 +

μ2
1 det(�). Both of them are real and xmin < 0 < xmax [resp. ymin < ymax ]. The

branches of Y (x) [resp. X(y)] take real values if and only if x ∈ [xmin, xmax ]
[resp. y ∈ [ymin, ymax ]]. Furthermore Y−(0) = − 2μ2

σ22
< 0, Y−(xmax ) < 0,

Y+(0) = 0, Y+(xmax ) < 0. See Fig.5.
(ii) For any u ∈ R

ReY±(u + iv)

= 1

σ22

(

− σ12u − μ2 ± 1√
2

√

(u − xmin )(xmax − u) + v2 + |(u + iv − xmin )(xmax − u − iv)|
)

.

(iii) Let δ = ∞ if σ12 ≥ 0 and δ = −μ2/σ12 − xmax > 0 if σ12 < 0. Then for some
ε > 0 small enough

ReY−(u + iv) < 0 for u ∈] − ε, xmax + δ[, v ∈ R.
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Proof Points (i) and (ii) follow from elementary considerations. The fact that
Y+(xmax ) < 0 implies the inequality−σ12xmax −μ2 < 0, so that δ > 0. Furthermore,
by (ii) Re Y−(u + iv) ≤ ReY−(u) which is strictly negative for u ∈] − ε, xmax + δ[
by the analysis in (i).

Lemma 3.2 (Continuation of the Laplace transform) Function ϕ2(x) can be meromor-
phically continued to the (cut) domain

{x = u + iv | u < xmax + δ, v ∈ R} \ [xmax , xmax + δ] (3.1)

by the formula:

ϕ2(x) = −γ1(x,Y−(x))ϕ1(Y−(x)) − exp
(

a0x + b0Y−(x)
)

γ2(x,Y−(x))
(3.2)

where z0 = (a0, b0). A symmetric continuation formula holds for ϕ1.

Proof By Lemma 3.1 (iii) for any x = u+ iv with u ∈]− ε, 0[ the following equation
holds

−γ (x,Y−(x))ϕ(x,Y−(x)) = γ1(x,Y
−(x))ϕ1(Y

−(x)) + γ2(x,Y
−(x))ϕ2(x)

+ exp(a0x + b0Y
−(x)).

Since γ (x,Y−(x)) = 0, the statement follows.

We now define

x∗ = 2
μ2

r12
r22

− μ1

σ11 − 2σ12
r12
r22

+ σ22

(

r12
r22

)2 and y∗∗ = 2
μ1

r21
r11

− μ2

σ11

(

r21
r11

)2 − 2σ12
r21
r11

+ σ22

.

(3.3)

Proposition 3.3 (Poles of the Laplace transform, necessary condition)

(i) x = 0 is not a pole of ϕ2(x), and ϕ2(0) = E[L2∞] < +∞. The local time spent
by the process on the horizontal axis is finite.

(ii) If x is a pole of ϕ2(x) in the domain (3.1), then x = x∗ and (x∗,Y−(x∗)) is a
unique non-zero solution of the system of two equations

γ (x, y) = 0, γ2(x, y) = r12x + r22y = 0. (3.4)

In this case, xmaxr12 + Y±(xmax )r22 > 0, x∗ is real and belongs to (0, xmax ).
(iii) If y is a pole of ϕ1(y), then y = y∗∗ and (X−(y∗∗), y∗∗) is a unique non-zero

solution of the system of two equations

γ (x, y) = 0, γ1(x, y) = r11x + r21y = 0. (3.5)

In this case, ymaxr21 + X±(ymax )r11 > 0, y∗∗ is real and belongs to (0, ymax ).
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Fig. 5 In the real plane (x, y), graphical representation of poles x∗ and y∗∗ when both exist

Finally, we define

y∗ := Y+(x∗) and x∗∗ := X+(y∗).

See Fig. 5 below, which depicts the poles x∗ and y∗∗ when they are both poles.

Proof (i) The observation that γ2(0,Y−(0)) = r22 × Y−(0) �= 0 implies the first
statement.

(ii) If x is a pole of ϕ2, then (x,Y−(x)) should be a solution of the system (3.4)
above by the continuation formula (3.2) and the continuity ofϕ1 [resp.ϕ2] on {
y ≤ 0}
[resp. {
x ≤ 0}]. This system has one solution (0, 0) and the second one (x◦, y◦),
which is necessarily real. Then x◦ ∈ [xmin, xmax ] and y◦ is either Y−(x◦) or Y+(x◦).
But x◦ can be a pole of ϕ2(x), if only it is within ]0, xmax ] and y◦ = Y−(x◦). This
last condition implies r12

r22
>

−Y±(xmax)
xmax

.

Proposition 3.4 (Poles of the Laplace transforms, sufficient condition) The point x∗
(resp. y∗∗) is a pole of ϕ2 (resp. ϕ1) if (and only if) xmaxr12 +Y±(xmax )r22 > 0 (resp.
ymaxr21 + X±(ymax )r11 > 0).

Proof The inequalities above are necessary by the previous proposition. The next two
lemmas prove sufficiency. In those, we denote the dependence of Laplace transforms
with the initial condition z0 by ϕ

z0
1 , ϕ

z0
2 instead of ϕ1, ϕ2. The proof is done for x∗,

but is of course symmetrical for y∗∗.
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Lemma 3.5 (Existence of the pole for a starting point) If xmaxr12+Y±(xmax )r22 > 0,
there exists z0 ∈ R

2+ such that x∗ is a pole of ϕz0
2 .

Proof The denominator of the continuation formula (3.2) vanishes since we assume
that xmaxr12 + Y±(xmax )r22 > 0. We are looking for a z0 such that the numerator
doesn’t vanish at x∗, which will imply that z0 is a pole of ϕ2. If γ1(x∗,Y−(x∗)) ≥ 0,
this is obvious due to the exponential term and since γ1(x∗,Y−(x∗)ϕ1(Y−(x)) ≥ 0.
We suppose now that −C := γ1(x∗,Y−(x∗)) < 0. We proceed with a proof by
contradiction. For the sake of contradiction, assume that

∀z0 = (a0, b0) ∈ R
2+, −Cϕ

(a0,b0)
1 (Y−(x∗)) + ea0x

∗+b0Y−(x∗) = 0. (3.6)

Let T be the stopping time defined by the first hitting time of the axis {x = 0}, i.e.
T = inf{t ≥ 0, Z1

t = 0} with Z = (Z1, Z2). (It is possible that T = +∞). Firstly,
since the Stieltjes measure dL1 is supported by {Z1 = 0} and since Z is a strong
Markov process, for a starting point z0 = (a0, b0) we have:

ϕ
(a0,b0)
1 (Y−(x∗)) = E(a0,b0)

[∫ +∞

T
eZ

2
t .Y

−(x∗)dL1
t 1T<+∞

]

(3.7)

= E(a0,b0)

[

EZT

[∫ +∞

0
eZ

2
t .Y

−(x∗)dL1
t

]

1T<+∞
]

(3.8)

= E(a0,b0)

[

ϕ
(0,Z2

T )

1 (Y−(x∗))1T<+∞
]

. (3.9)

Conditioning by the value of Z2
T , using (3.6) and Y−(x∗) ≤ 0, we get:

ϕ
(a0,b0)

1 (Y−(x∗)) =
∫ +∞
0

ϕ
(0,b)
1 (Y−(x∗))P(a0,b0)(T < +∞, Z2T = db) (3.10)

=
∫ +∞
0

1

C
e0.x

∗+bY−(x∗)
P(a0,b0)(T < +∞, Z2T = db) ≤ 1

C
P(a0,b0)(T < +∞) ≤ 1

C
. (3.11)

But, (a0, b0) can be chosen such that ea0x
∗+b0Y−(x∗) is as large as desired because

x∗ > 0. This is in contradiction with (3.6).

Lemma 3.6 (Existence of a pole for all starting points) If x∗ is a pole of ϕz0
2 for some

z0 ∈ R
2+, then x∗ is a pole of ϕ

z′0
2 for every z′0 ∈ R

2+.

The proof of Lemma 3.6 requires Proposition 3.8 to be established and is therefore
postponed until after Proposition 3.8.

Lemma 3.7 (Nature of the branching point of ϕ2) Letting x → xmax with x < xmax ,
we have

• If γ2(xmax ,Y−(xmax )) = 0, i.e. x∗ = xmax , then

ϕ2(x) = C√
xmax − x

+ O(1)

for a constant C > 0.
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• If γ2(xmax ,Y−(xmax )) �= 0, then

ϕ2(x) = C1 + C2
√
xmax − x + O(xmax − x)

for constants C1 ∈ R and C2 > 0.

Proof By Lemma 3.1, Y− can be written as Y−(x) = Y−(xmax ) − c
√
xmax − x +

O(xmax − x) where c > 0. We proceed to calculate an elementary asymptotic expan-
sion of the quotient of the continuation formula (3.2). Firstly,

1

γ2(x, Y−(x))
= 1

γ2(xmax , Y−(xmax )) − r22c
√
xmax − x + O(xmax − x)

=

⎧

⎪

⎨

⎪

⎩

−1
r22c

√
xmax−x

if γ2(xmax , Y−(xmax ) = 0,

1
γ2(xmax ,Y−(xmax ))

(

1 + r22c
√
xmax−x

γ2(xmax ,Y−(xmax ))
+ O(xmax − x)

)

if γ2(xmax , Y−(xmax )) �= 0.

Secondly, for the numerator,

γ1(x,Y
−(x))ϕ1(Y

−(x)) + ea0x+b0Y−(x) =
(

γ1(xmax ,Y
−(xmax )) − r21c

√
xmax − x + O(xmax − x)

)

× (

ϕ1(Y
−(xmax )) − cϕ′

1(Y
−(xmax ))

√
xmax − x + O(xmax − x)

)

+ea0xmax+b0Y−(xmax )(1 − cb0
√
xmax − x + O(xmax − x)) (3.12)

Combining the two asymptotic expansions, we obtain the desired formula with

C = γ1(xmax ,Y−(xmax ))ϕ1(Y−(xmax )) + ea0xmax+b0Y−(xmax )

r22c

and

C2 = 1

γ2(xmax , Y−(xmax ))

[

r21cϕ1(Y
−(xmax )) + cγ1(xmax , Y−(xmax ))ϕ′

1(Y
−(xmax )) + cb0e

a0xmax+b0Y
−(xmax )

− r22c

γ2(xmax , Y−(xmax ))

(

γ1(xmax , Y−(xmax ))ϕ1(Y
−(xmax )) + ea0xmax+b0Y

−(xmax )
) ]

.

The following proposition states the asymptotics of the Green’s functions h1 and
h2 on the boundaries. We note that we obtain the same asymptotics as in Theorem 2
and 5 with α → 0, which is consistent with the link made between h1, h2 and g in
Proposition 2.9.

Proposition 3.8 (Asymptotics of the Green’s functions on the boundary h1 and h2) In
this proposition we denote by c a constant which is allowed to vary from one line to
the next.

1. Suppose that we have a pole x∗ ∈]0, xmax [ for ϕ2. Then, the Green’s function h2
has the following asymptotics

h2(u) ∼
u→∞ ce−x∗u .
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2. Suppose that x∗ = xmax , then

h2(u) ∼
u→∞ cu−1/2e−xmax u .

3. Suppose that there is no pole in ]0, xmax [ and that x∗ �= xmax , then,

h2(u) ∼
u→∞ cu−3/2e−xmax u .

A symmetric result holds for h1.

Proof The result directly follows from classical Tauberian inversion lemmas which
link the asymptotic of a function at infinity to the first singularity of its Laplace
transform (which is here given in Lemma 3.7). We refer here to Theorem 37.1 of
Doetsch’s book [13] and more precisely we apply the special case stated in Lemma
C.2 of [10]. To apply this lemma, we have to verify the analyticity and the convergence
to 0 at infinity ofϕ2 in a domainGδ(xmax ) := {z ∈ C : z �= xmax , | arg(z−xmax )| > δ}
for some δ ∈ (0, π/2). But this follows directly from the continuation procedure of
Lemma 3.2:the exponential part of the continuation formula (3.2) tends to 0 in a
domain Gδ(xmax ) for some δ ∈ (0, π/2) by using (ii) of lemma 3.1. Note that the
convergence to 0 also follows from Lemma B.2. Then, Lemma 3.7 gives the nature
at the branching point xmax which is the smallest singularity except in the case where
there is a pole in ]0, xmax [, where the pole x∗ is the smallest singularity.

Remark 3.9 We remark in the proof of Lemma 3.7 that O(1) and O(xmax − x) of this
lemma are locally uniform according to z0. This means that

supz′0∈V
∣

∣

∣

∣

ϕ
(z′0)
2 (x) − C(z′0)√

xmax−x

∣

∣

∣

∣

= O(1) as x → x∗ when γ2(xmax ,Y−(xmax )) = 0

for a sufficiently small neighborhood V of z0 (and the same holds for O(xmax − x) in
the other case). This implies that the results of Proposition 3.8 hold locally uniformly
in z0. Indeed, it is enough to adapt the Tauberian lemmas of [13] used in the proof of
Proposition 3.8. Note that the constants c of this proposition depend continuously on
z0.

Proof of Lemma 3.6 Let z0 = (a0, b0) be a starting point such that x∗ is a pole of ϕ
z0
2 .

Then, the continuation formula (3.2) implies that −γ1(x∗,Y−(x∗))ϕz0
1 (Y−(x∗)) −

exp
(

a0x∗ + b0Y−(x∗)
) �= 0. By continuity with respect to the starting point (which

follows from the integral formula given in [22] or from [38]), there exists a neighbour-

hood V of z0 such that −γ1(x∗,Y−(x∗))ϕz′0
1 (Y−(x∗))− exp

(

a′
0x

∗ + b′
0Y

−(x∗)
) �= 0

for all z′0 = (a′
0, b

′
0) ∈ V . Therefore, by the continuation formula, x∗ is a pole of

ϕ
z′0
2 for all z′0 ∈ V . From Proposition 3.8 and by continuity of the constant of this

proposition according to z′0 we conclude the following. If x∗ is a pole of ϕ
z′0
2 , there

exists a constant c such that for all z′0 ∈ V we have h
(z′0)
2 (u) = ce−x∗u(1 + o(1))

(notice that o(1) is uniform in z′0 in the sense of Remark 3.9 and that c is continuous
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in z′0). For z′′0 ∈ R
2 we introduce the stopping time

TV := inf{t > 0 : Zz′′0
t ∈ V }

where Z
z′′0
t denotes the process starting from z′′0. By the strongMarkov property applied

to TV we have for some constant C and when u → ∞,

h
z′′0
2 (u) � Pz′′0 (TV < ∞) inf

z′0∈V
h
z′0
2 (u) = Ce−x∗u(1 + o(1)).

We deduce by Proposition 3.8 that z′′0 is necessarily a pole.

We conclude this section with the following lemma which will be needed in Sect. 6.

Lemma 3.10 (Boundedness of the Laplace transform) Let η ∈]0, δ[, we have

sup
u∈[X±(ymax)−η,xmax+η]

|v|>ε

|ϕ2(u + iv)| < ∞.

Proof Clearly, for any x = u + iv with u < 0, |ϕ2(u + iv)| ≤ ϕ2(u). Then for any
ε > 0,

sup
u∈[X±(ymax)−η,−ε]

|ϕ2(u + iv)| < ∞. (3.13)

For any x = u + iv with u ∈ [−ε, xmax + η] Lemma 3.2 applies and gives the
representation (3.2). Let us consider all its terms. By Lemma 3.1 (ii), for any fixed
u ∈ R, the function ReY−(u + iv) is strictly decreasing as |v| goes from 0 to infinity.
Moreover, for any u ∈ [−ε, xmax + δ]

ReY−(u + iv) ≤ − 1√
2σ22

|v|.

Then,

|ϕ1(Y
−(u + iv))| ≤ ϕ1(Re Y

−(u + iv)) ≤ ϕ1

( −1√
2σ22

|v|
)

≤ ϕ1(0). (3.14)

By Proposition 3.3 (i) ϕ1(0) < ∞. It follows that

sup
u∈[−ε,xmax+δ]

ϕ1(Y
−(u + iv)) < ∞. (3.15)

By Lemma 3.1 (i) there exists a constant d1 > 0 such that

|γ1(u + iv,Y−(u + iv))| ≤ d1|v|, ∀u ∈ [−ε, xmax + η], |v| ≥ ε. (3.16)
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Note that |γ2(u + iv,Y−(u + iv))| ≥ |r12u + r22ReY−(u + iv)|. Then by Lemma
3.1 (ii) and also by Proposition 3.3 (ii) there exists a constant d2 > 0 such that

|γ2(u + iv,Y−(u + iv))| ≥ d2|v|, ∀u ∈ [−ε, xmax + η], |v| ≥ ε. (3.17)

Finally by Lemma 3.1 (ii)

| exp(a0(u + iv) + b0Y
−(u + iv))| = exp(a0u + b0Re Y

−(u + iv))

≤ exp

((

a0−b0
σ12

σ22

)

u − b0√
2σ22

|v|
)

(3.18)

for any u ∈ [−ε, xmax + η] and v with |v| > ε. Then the estimate (3.13), the repre-
sentation (3.2) combined with the estimates (3.15), (3.16), (3.17) and (3.18) lead to
the statement of the lemma.

4 Inverse Laplace transform: from a double integral to simple
integrals

By the Laplace transform inversion formula ([13, Theorem 24.3 and 24.4] and [5]),
for any ε > 0 small enough,

g(a, b) = 1

(2π i)2

∫ −ε+i∞

−ε−i∞

∫ −ε+i∞

−ε−i∞
ϕ(x, y) exp(−ax − by)dxdy,

in the sense of principal value convergence.

Lemma 4.1 (InverseLaplace transforms as a sumof simple integrals)Let z0 = (a0, b0)
be the starting point of the process. For any (a, b) ∈ R

2+ where either a > a0, b > 0
or b > b0, a > 0 the following representation holds:

g(a, b) = I1(a, b) + I2(a, b) + I3(a, b)

where

I1(a, b) = 1

2π i

∫ −ε+i∞
−ε−i∞

ϕ2(x)γ2(x, Y
+(x)) exp(−ax − bY+(x))

dx

γ ′
y(x, Y+(x))

,

I2(a, b) = 1

2π i

∫ −ε+i∞
−ε−i∞

ϕ1(y)γ1(X
+(y), y) exp(−aX+(y) − by)

dy

γ ′
x (X+(y), y)

,

I3(a, b) = 1

2π i

∫ −ε+i∞
−ε−i∞

exp(a0x + b0Y
+(x)) exp(−ax − bY+(x))

dx

γ ′
y(x, Y+(x))

if b > b0,

I3(a, b) = 1

2π i

∫ −ε+i∞
−ε−i∞

exp(a0X
+(y) + b0y) exp(−aX+(y) − by)

dy

γ ′
x (X+(y), y)

if a > a0.

123



Queueing Systems

The twodifferent formulas for I3 will be useful in Sect. 9 in studying the asymptotics
along the axes.

Proof For any ε > 0 small enough γ (−ε,−ε) < 0. Then

Reγ (−ε + iv1,−ε + iv2) < 0 ∀v1, v2 ∈ R (4.1)

since � is a covariance matrix. Then, by (2.2)

g(a, b) = −1

(2π i)2

∫ −ε+i∞

−ε−i∞

∫ −ε+i∞

−ε−i∞
γ1(x, y)ϕ1(y) + γ2(x, y)ϕ2(x) + exp(a0x + b0y)

γ (x, y)
exp(−ax − by)dxdy.

Now, let us consider for example the second term. It can be written as

−1

(2π i)2

∫ −ε+i∞

−ε−i∞
ϕ2(x) exp(−ax)

(

∫ −ε+i∞

−ε−i∞
γ2(x, y)

γ (x, y)
exp(−by)dy

)

dx .

Note that the convergence in the sense of the principal value of this integral can be
guaranteed by integration by parts.

Now, it just remains to show that

−1

2π i

∫ −ε+i∞

−ε−i∞
γ2(x, y)

γ (x, y)
exp(−by)dy = γ2(x,Y+(x))

γ ′
y(x,Y

+(x))
exp

( − bY+(x)
)

. (4.2)

Let x = −ε. The equation γ (−ε, y) = 0 has two solutions, Y+(−ε) > 0 and
Y−(−ε) < 0. (In fact, for ε > 0 small enough Y+(−ε) is close to Y+(0) = 0 staying
positive and Y−(−ε) is close to Y−(0) = −2μ2/σ22 < 0). Let x = −ε + iv. The
functionsY+(−ε+iv) andY−(−ε+iv) are continuous in v. By (4.1) their real parts do
not equal −ε for any v ∈ R. Thus ReY+(−ε + iv) > −ε and ReY−(−ε + iv) < −ε

for all v ∈ R. Let us construct the contour [−ε − i R,−ε + i R] ∪ {t + i R, | t ∈
[−ε, 0]} ∪ {Reit | t ∈] − π/2 + π/2[} ∪ {t − i R, | t ∈ [−ε, 0]}, see Fig. 6.

For any fixed x = −ε + iv, the integral over this contour taken in the counter-
clockwise direction of the function γ2(x,y)

γ (x,y) exp(−by) equals the residue of this function
multiplied by2π i ,which is exactly the result in (4.2). It suffices to show that the integral
over {t + i R | t ∈ [−ε, 0]} ∪ {Reit | t ∈] − π/2 + π/2[} ∪ {t − i R | t ∈ [−ε, 0]}
converges to zero as R → ∞. The integral over the half of the circle {Reit | t ∈
] − π/2 + π/2[} equals

∫ π/2

−π/2

γ2(x, Reit )

γ (x, Reit )
exp(−bReit )i Reit dt .

We have supR>R0
supt∈]−π/2,π/2[

∣

∣

∣

γ2(x,Reit )
γ (x,Reit )

i Reit
∣

∣

∣ < ∞ for R0 = R0(x) > 0 large

enough, while | exp(−bReit )| = exp(−bR cos t) → 0 as R → ∞ for any t ∈
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Fig. 6 Integral contour in the complex plane Cy , with the pole Y+(x)

] − π/2, π/2[ since b > 0. Hence, the integral over the half of the circle converges to
zero as R → ∞ by the dominated convergence theorem. Let us look at the integral
over segment {t+ i R | t ∈ [−ε, 0]}. For any fixed x = −ε+ iv, there exists a constant
C(x) > 0 such that for any R large enough

sup
u∈[−ε,0]

∣

∣

∣

γ2(x, u + i R)

γ (x, u + i R)

∣

∣

∣ ≤ C(x)

R
.

Therefore

∣

∣

∣

∫ 0

−ε

γ2(x, u + i R)

γ (x, u + i R)
exp(−b(u + i R))du

∣

∣

∣ ≤ ε exp(bε)
C(x)

R
−→
R→∞ 0.

The representation of I1(a, b) follows.
The reasoning is the same for the third term. The integral over the half of the circle

equals

∫ π/2

−π/2

exp(−(b − b0)Reit )

γ (x, Reit )
i Reit dt .

Wehave supR>R0
supt∈]−π/2,π/2[

∣

∣

∣

1
γ (x,Reit )

i Reit
∣

∣

∣ < ∞while | exp(−(b−b0)Reit )| =
exp(−(b − b0)R cos t) → 0 as R → ∞ for any t ∈] − π/2, π/2[ since b − b0 > 0.
The integral over the half of the circle converges to zero as R → ∞ by the dominated
convergence theorem once again. For any fixed x = −ε + iv, there exists a constant
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C(x) > 0 such that for any R large enough

sup
u∈[−ε,0]

∣

∣

∣

1

γ (x, u + i R)

∣

∣

∣ ≤ C(x)

R2 .

Therefore

∣

∣

∣

∫ 0

−ε

exp(−(b − b0)(u + i R))

γ (x, u + i R)
du

∣

∣

∣ ≤ ε exp((b − b0)ε)
C(x)

R2 → 0, R → ∞.

The representations for I2(a, b) and I3(a, b) with a > a0 are obtained in the same
way.

Remark. Let us introduce the notation a, b, c, ã,˜b, c̃ by

γ (x, y) = a(x)y2 + b(x)y + c(x) = ã(y)x2 +˜b(y)x + c̃(y). (4.3)

Then functions in the integrand can be represented as

γ ′
y(x, Y

+(x)) = a(x)(Y+(x) − Y−(x)) = 2a(x)Y+(x) + b(x) =
√

b2(x) − 4a(x)c(x) (4.4)

γ ′
x (X

+(y), y) = ã(y)(X+(y) − X−(y)) = 2̃a(y)X+(y) +˜b(y) =
√

˜b2(y) − 4̃a(y)̃c(y). (4.5)

5 Saddle point and contour of the steepest descent

Our aim is to study the integrals I1, I2 and I3 of Lemma 4.1 using the saddle point
method (see, for example, Fedoryuk [18]).

Saddle point

For α ∈ [0, 2π [ we define

(x(α), y(α)) := argmax(x,y):γ (x,y)=0(x cosα + y sin α). (5.1)

We will see that this point turns out to be the saddle point of the functions inside the
exponentials of the integrals I1, I2 and I3. See Fig. 7 for a geometric interpretation of
this point.

The map α : [0, 2π [→ {(x, y) : γ (x, y) = 0} is a diffeomorphism. The func-
tions x(α), y(α) are in the class C∞([0, 2π ]). For any α ∈ [0, π/2] the function
cos(α)x+sin(α)Y+(x) reaches itsmaximum at the unique point on [X±(ymax ), xmax ]
called x(α). This function is strictly increasing on [X±(ymax ), x(α)] and strictly
decreasing on [x(α), xmax ]. The function cos(α)X+(y) + sin(α)y reaches its max-
imum on [Y±(xmax ), ymax ] at the unique point y(α). It is strictly increasing on
[Y±(xmax ), y(α)] and strictly decreasing on [y(α), ymax ].
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Fig. 7 Graphical representation of the saddle point. We denote eα = (cos(α), sin(α))

Thus x(0) = xmax , y(0) = Y±(xmax ), x(π/2) = X±(ymax ), y(π/2) = ymax .

Finally, x(α) = 0 and y(α) = 0 if (cos(α), sin(α)) =
(

μ1
√

μ2
1+μ2

2

,
μ2

√

μ2
1+μ2

2

)

. We

denote the direction corresponding to the drift by αμ.
Let us define the functions

F(x, α) = − cos(α)x − sin(α)Y+(x) + cos(α)x(α) + sin(α)y(α), (5.2)

G(y, α) = − cos(α)X+(y) − sin(α)y + cos(α)x(α) + sin(α)y(α).

We see that the function F is (up to a constant) the function inside exponential of the
integral I1, and the function G is (up to a constant) the function inside the exponential
of the integral I2, see Lemma 4.1. We have

F(x(α), α) = 0 ∀α ∈ [0, π/2]

and

F ′
x (x(α), α) = 0 ∀α ∈]0, π/2], but not at α = 0.

In the same way G(y(α), α) = 0 for any α ∈ [0, π/2] and G ′
y(y(α), α) = 0 for any

α ∈ [0, π/2[ but not at α = π/2. Then (Y+(x(α)))′ = −ctan(α) and (X+(y(α)))′ =
−tan(α).

Using the identities γ (x,Y+(x)) ≡ 0 and γ (X+(y), y) ≡ 0, we get:

(Y+(x))′
∣

∣

∣

x=x(α)
= −γ ′

x (x(α), y(α))

γ ′
y(x(α), y(α))

= −cos(α)

sin(α)
, α ∈]0, π/2] (5.3)
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Fig. 8 Level sets of 
(F) in
purple and of �(F) in orange.
The saddle point x(α) is
represented in blue and the
branch point xmax is in red
(Color figure online)

(X+(y))′
∣

∣

∣

y=y(α)
= −γ ′

y(x(α), y(α))

γ ′
x (x(α), y(α))

= − sin(α)

cos(α)
, α ∈ [0, π/2[

(Y+(x))′′
∣

∣

∣

x=x(α)
= −σ11 + 2σ12(−ctan (α)) + σ22(−ctan (α))2

γ ′
y(x(α), y(α))

(X+(y))′′
∣

∣

∣

y=y(α)
= −σ11(−tan(α))2 + 2σ12(−tan (α)) + σ22

γ ′
x (x(α), y(α))

F ′′
x (x(α), α) = σ11 sin2(α) − 2σ12 sin(α) cos(α) + σ22 cos2(α)

γ ′
y(x(α), y(α)) sin α

> 0 α ∈]0, π/2],
(5.4)

G ′′
y(y(α), α) = σ11 sin2(α) − 2σ12 sin(α) cos(α) + σ22 cos2(α)

γ ′
x (x(α), y(α)) cos(α)

> 0 α ∈ [0, π/2],

where the strict inequality arises from (4.4), (4.5) and the positive-definite form of �.
The values of x(α) and y(α) are given by the following formulas.

x(α) = (μ2σ12 − μ1σ22)

det(�)
+ 1

det(�)
(σ22 − tan(α)σ12)

√

μ2
2σ11 − 2μ1μ2σ12 + μ2

1σ22

σ11 tan2(α) − 2σ12 tan(α) + σ22
(5.5)

y(α) = (μ1σ12 − μ2σ11)

det(�)
+ 1

det(�)

(

σ11 − 1

tan(α)
σ12

)

√

√

√

√

√

μ2
1σ22 − 2μ1μ2σ12 + μ2

2σ11
σ22

tan2(α)
− 2

σ12
tan(α)

+ σ11
. (5.6)

Indeed, using the same calculations as in section 4.2 of [23], the equation 0 =
d
dx

[

γ (x,Y+(x))
] |x=x(α) combined with the first equation of (5.3) gives a linear rela-

tionship between x(α) and y(α). Injecting this condition in the polynomial equation
γ (x(α), y(α)) = 0, we get two possible values for x(α) and y(α). The choice of sign
then depends on α.
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Contour of the steepest descent

Before continuing, the reader should readAppendixAwhich states a parameter depen-
dent Morse lemma. The usual Morse Lemma enables one to find steepest descent
contours for a function at a critical point. The parameter dependent Morse lemma
treats the case of a family of functions ( fα)α which have critical points x(α) (with
smooth dependency in α). This lemma tells us that the contours of steepest descents
of fα at x(α) are also smooth in α. This property is necessary to obtain the asymptotic
behaviour where r → +∞ and α → α0. Let α0 ∈]0, π/2]. We apply Lemma A.1 to
F defined in (5.2). Let us fix any ε ∈]0, K [ and consider any α such that |α−α0| < η,
where constants K and η are taken from the definition of �(0, α0) in Lemma A.1.
Then, for any α we can construct the contour of the steepest descent

�x,α = {x(i t, α) | t ∈ [−ε, ε]}.

Clearly,

F(x(i t, α), α) = −t2.

We denote by x+
α = x(iε, α) and x−

α = x(−iε, α). Then

F(x+
α , α) = −ε2, F(x−

α , α) = −ε2. (5.7)

Since F ′′
x (x(α), α) �= 0, the contours in a neighborhood of x(α) where the function

F is real are orthogonal, see Fig. 8. One of them is the real axis. The other is the
contour of the steepest descent, which is the orthogonal to the real axis. It follows
that Imx+

α0
> 0 and Imx−

α0
< 0. By continuity of x(iε, α) on α for any η > 0 small

enough, there exists ν > 0 such that

Im x+
α > ν, Im x−

α < −ν ∀α : |α − α0| < η. (5.8)

In the same way, for any α ∈ [0, π/2[, we may define by the generalized Morse
lemma the function y(ω, α) w.r.t. G(y, α). Let α0 ∈ [0, π/2[. We can construct the
contour of the steepest descent

�y,α = {y(i t, α) | t ∈ [−ε, ε]}

with end points y+
α = y(iε, α) and y−

α = y(−iε, α) and the property analogous to
(5.8).

We note that for any α =]0, π/2[

�x,α = ←−−−−−−
X+(�y,α)−−−−−−→, �y,α = ←−−−−−−

Y+(�x,α)−−−−−−→. (5.9)
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Fig. 9 Steepest descent contour
for 
(F) according to α. As α

gets closer to zero, the
corresponding contours appear
in lighter shades of green. When
α → 0 this contour tends to the
half line [xmax ,∞) (Color
figure online)

The arrows mean that the direction has to be changed because of the facts that

(X+(y))′
∣

∣

∣

y=y(α)
< 0 and (Y+(x))′

∣

∣

∣

x=x(α)
< 0. This notation comes from [17] (chap-

ter 5.3, p 137).

Case where˛0 = 0

In this case�y,0 is nowwell-defined, but not�x,0 (since F ′′
x (x(0), 0) = ∞), see Fig. 9.

Thus we define

�x,0 = ←−−−−−−
X+(�y,0)−−−−−−→

with end points x+
0 = X+(y+

0 ) = xmax + ε2 and x−
0 = X+(y−

0 ) = xmax + ε2. In
fact, for α = 0, we have G(y, 0) = −X+(y)+ xmax and G(y(iε, 0), 0) = −ε2. Thus
�x,0 runs the real segment from xmax + ε2 to xmax and back to xmax + ε2. Figure9
illustrates why this phenomenon happens when α = 0. Again by continuity on α we
may find η > 0 and ν > 0 small enough, such that

Rex+
α − xmax > ν, Rex−

α − xmax > ν, ∀α ∈ [0, η]. (5.10)

If α0 = π/2, �x,π/2 is well-defined, but not �y,π/2. We then let

�y,π/2 = ←−−−−−−−
Y+(�x,π/2)−−−−−−−→

with endpoints y+
α = Y+(x+

α ) and y−
α = Y+(x−

α ).
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Fig. 10 In the complex plane Cx , shift of the integration contour passing through the saddle point along
the steepest line

6 Shift of the integration contours and contribution of the poles

We will now define the integration contours of I1, I2 and I3 using the contours of the
steepest descent studied in the previous section. First, let

S+
x,α = {x+

α + i t | t ≥ 0 }, S−
x,α = {x−

α − i t | t ≥ 0},
S+
y,α = {y+

α + i t | t ≥ 0}, S−
y,α = {y−

α − i t | t ≥ 0}.

Now, let us construct the integration contours Tx,α = S−
x,α + �x,α + S+

x,α and
Ty,α = S−

y,α + �y,α + S+
y,α for any α ∈ [0, π/2]. See Fig. 10 which illustrates these

integration contours.

Case where the saddle point meets the pole

The only exception in defining these contours will be for α ∈ [0, π/2] such that
x(α) = x∗ ∈]0, xmax [ is a pole of ϕ2(x) and y(α) = y∗∗ ∈]0, ymax [ is a pole of
ϕ1(y).We call these directionsα∗ andα∗∗, so that x(α∗) = x∗, y(α∗) = Y+(x∗) = y∗,
y(α∗∗) = y∗∗, x(α∗∗) = X+(y∗∗) = x∗∗. When x∗ and y∗∗ are poles, we recall that
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by the Lemma 3.3:

x∗ = 2
μ2

r12
r22

− μ1

σ11 − 2σ12
r12
r22

+ σ22

(

r12
r22

)2 and y∗∗ = 2
μ1

r21
r11

− μ2

σ11

(

r21
r11

)2 − 2σ12
r21
r11

+ σ22

.

(6.1)
We also recall that

y∗ := Y+(x∗) and x∗∗ := X+(y∗∗). (6.2)

We remark that we have y∗ = − r12
r22

x∗ (resp. x∗∗ = − r21
r11

y∗∗) if and only if x∗ (resp
y∗∗) is not a pole of ϕ2 (resp. ϕ1) because of the condition on x∗ and y∗∗ to be poles.

Remark 6.1 If x∗ is a pole, then α∗ ∈]0, αμ[, and if y∗∗ is a pole, then α∗∗ ∈]αμ, π/2[.
We denote α∗ = −∞ if x∗ is not a pole and α∗∗ = +∞ if y∗∗ is not a pole.

If α = α∗ ∈]0, αμ[, we modify in the definition of Tx,α the contour �x,α by ˜�x,α ,
which is the half of the circle centered at x(α∗) going from x+

α∗ to x−
α∗ in the counter-

clockwise direction. The same modification is made for α = α∗∗ ∈]αμ, π/2[.
The next lemma performs the shift of the integration contour and takes into account

the contribution of the crossed poles. Recall that I1, I2 and I3 are defined in Lemma4.1.

Lemma 6.2 (Contribution of the poles to the asymptotics) Let α ∈ [0, π/2]. Then for
any a, b > 0

I1(a, b) =
(−resx=x∗ϕ2(x)

)

γ2(x∗, y∗)
γ ′
y(x

∗, y∗)
exp(−ax∗ − by∗) × 1α<α∗

+ 1

2π i

∫

Tx,α

ϕ2(x)γ2(x,Y+(x))

γ ′
y(x,Y

+(x))
exp(−ax − bY+(x))dx,

I2(a, b) =
(−resy=y∗∗ϕ1(y)

)

γ1(x∗∗, y∗∗)
γ ′
x (x

∗∗, y∗∗)
exp(−ax∗∗ − by∗∗) × 1α>α∗∗

+ 1

2π i

∫

Ty,α

ϕ1(y)γ1(X+(y), y)

γ ′
x (X

+(y), y)
exp(−aX+(y) − by)dy,

I3(a, b) = 1

2π i

∫

Tx,α

exp((a0 − a)x + (b0 − b)Y+(x))
dx

γ ′
y(x,Y

+(x))
if b > b0

I3(a, b) = 1

2π i

∫

Tx,α

exp((a0 − a)X+(y) + (b0 − b)y)
dy

γ ′
x (X

+(y), y)
if a > a0.

We remark that we have γ2(x∗, y∗)resx∗ϕ2 < 0 and γ1(x∗∗, y∗∗)resy∗∗ϕ1 < 0.

Proof We start from the result of Lemma 4.1, and we use Cauchy theorem to shift
the integration contour. We take into account the poles by the residue theorem noting
that x∗ < x(α) if and only if α < α∗ and that y∗∗ < y(α) if and only if α∗∗ < α. In
order to get the representation of I1 by shifting the contour, we want to show that the
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integrals on the dotted lines of Fig. 10 tend to 0 when these lines go to infinity. To do
so, it suffices to show that for any η > 0 small enough,

sup
u∈[X+(ymax )−η,xmax+η]

∣

∣

∣

ϕ2(u + iv)γ2(u + iv,Y+(u + iv))

γ ′
y(u + iv,Y+(u + iv))

exp(−a(u + iv) − bY+(u + iv))

∣

∣

∣ → 0, as v → ∞.

It suffices to study the supremum on [−ε, xmax + η]. By Lemma 3.10 for any ε > 0,

sup
u∈[X+(ymax )−η,xmax+η],|v|≥ε

|ϕ2(u + iv)| < ∞.

Let us observe that by (4.4)

γ ′
y(x, Y

+(x)) =
√

b2(x) − 4a(x)c(x) =
√

(σ 2
12 − σ11σ22)x2 + 2(μ2σ12 − μ1σ22)x + μ2

2. (6.3)

This function equals zero only at real points xmin and xmax and grows linearly in
absolute value as |�x | → ∞. By Lemma 3.1 (i) the function |γ2(x,Y+(x))| grows
linearly as |�x | → ∞. Then for any ε > 0

sup
u∈[X+(ymax )−η,xmax+η],

|v|≥ε

∣

∣

∣

γ2(u + iv,Y+(u + iv))

γ ′
y(u + iv,Y+(u + iv))

exp(−a(u + iv))

∣

∣

∣ < ∞.

Finally,

sup
u∈[X+(ymax )−η,xmax+η]

| exp(−bY+(u + iv))|

= sup
u∈[X+(ymax )−η,xmax+η]

exp(−bReY+(u + iv)) → 0,

as |v| → ∞ due to Lemma 3.1 (ii) and the fact that b > 0. The other representations
are obtained in the same way. In the representations of I3(a, b) we have used the facts
that a − a0 > 0 and b − b0 > 0.

7 Exponentially negligible part of the asymptotic

Let us recall the integration contours Tx,α = S−
x,α + �x,α + S+

x,α and Ty,α = S−
y,α +

�y,α +S+
y,α for any α ∈ [0, π/2].This section establishes a domination of the integrals

on the contours S±
x,α and S±

y,α . This domination will be useful in the following sections
to show that these integrals are negligible. We will see that the asymptotics of integrals
I1, I2 and I3 of contour Tx,α and Ty,α are given by the integrals on the lines of steepest
descent �x,α and �y,α .
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Lemma 7.1 (Negligibility of the integrals on S±
x,α and S±

y,α) For any couple (a, b) ∈
R
2+ we may define α(a, b) as the angle in [0, π/2] such that cos(α) = a√

a2+b2
and

sin(α) = b√
a2+b2

.

• Let α0 ∈]0, π/2]. Then for any η small enough and any r0 > 0 there exists
a constant D > 0 such that for any couple (a, b) where

√
a2 + b2 > r0 and

|α(a, b) − α0| < η we have

∣

∣

∣

∫

S+
x,α

ϕ2(x)γ2(x, Y
+(x))

γ ′
y(x, Y+(x))

exp
( − ax − bY+(x)

)

dx
∣

∣

∣ ≤ D

b
exp

(

− ax(α) − by(α) − ε2
√

a2 + b2
)

.

(7.1)
Furthermore, if b > b0 we have

∣

∣

∣

∫

S+
x,α

exp((a0 − a)x + (b0 − b)Y+(x))
dx

γ ′
y (x, Y+(x))

∣

∣

∣ ≤ D

b − b0
exp

(

− ax(α) − by(α) − ε2
√

a2 + (b − b0)2
)

.

(7.2)
• Let α0 ∈ [0, π/2[. Then for any η small enough and any r0 > 0 there exists
a constant D > 0 such that for any couple (a, b) such that

√
a2 + b2 > r0,

|α(a, b) − α0| ≤ η we have

∣

∣

∣

∫

S+
y,α

ϕ1(y)γ1(X
+(y), y)

γ ′
x (X+(y), y)

exp
( − aX+(y) − by

)

dy
∣

∣

∣ ≤ D

a
exp

(

− ax(α) − by(α) − ε2
√

a2 + b2
)

.

(7.3)
Furthermore, if a > a0 we have

∣

∣

∣

∫

S+
y,α

exp((a0 − a)X+(y) + (b0 − b)y)
dy

γ ′
x (X+(y), y)

∣

∣

∣ ≤ D

a − a0
exp

(

− ax(α) − by(α) − ε2
√

(a − a0)2 + b2
)

.

(7.4)

The same estimations hold for S−
x,α and S−

y,α .

Proof First, with definition (5.2) and the notation in (5.7), the estimate (7.1) can be
written as

∣

∣

∣

∫

v>0

ϕ2(x
+
α + iv)γ2(x

+
α + iv, Y+(x+

α + iv))

γ ′
y(x

+
α + iv, Y+(x+

α + iv))
exp

( −
√

a2 + b2
(

F(x+
α + iv, α) − F(x+

α , α)
)

dx
∣

∣

∣ ≤ D

b

(7.5)
with α = α(a, b).

Let be α0 ∈]0, π/2]. If α0 �= π/2, let us fix η > 0 sufficiently small such that
α0 − η > 0, and α0 + η ≤ π/2. If α0 = π/2, let us fix any small η > 0 and consider
only α ∈ [π/2 − η, π/2].

By Lemma 3.10 and equation (5.8)

sup
v≥0,|α−α0|≤η

|ϕ2(x
+
α + iv)| < ∞. (7.6)
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By the observation (4.4) γ ′
y(x,Y

+(x)) = 0 only if x = xmin, xmax . Then by (5.8) we
have

inf
v≥0,|α−α0|≤η

|γ ′
y(x

+
α + iv,Y+(x+

α + iv))| > 0. (7.7)

Again by (6.3) and Lemma 3.1 (ii) we have

sup
v≥0,|α−α0|≤η

∣

∣

∣

γ2(x+
α + iv,Y+(x+

α + iv))

γ ′
y(x

+
α + iv,Y+(x+

α + iv))

∣

∣

∣ < ∞. (7.8)

Finally

| exp ( −
√

a2 + b2(F(x+
α + iv, α) − F(x+

α , α))
)| = exp

( − b(ReY+(x+
α + iv) −ReY+(x+

α ))
)

. (7.9)

By Lemma 3.1 (ii), the function ReY+(x+
α + iv) − ReY+(x+

α ) equals 0 at v = 0
is strictly increasing as v goes from zero to infinity. Moreover, it grows linearly as
v → ∞: there exists a constant c > 0 such that for any α such that |α − α0| ≤ η and
any v large enough

ReY+(x+
α + iv) − ReY+(x+

α ) ≥ cv. (7.10)

It follows from (7.6), (7.8), (7.9) and (7.10) that the left-hand side of (7.5) is bounded
by

C
∫ ∞

0
exp(−bcv)dv = C × (cb)−1

with some constant C > 0 for all couples (a, b) with |α(a, b) − α0| ≤ η.
As for the integral (7.2), we make the change of variables B = b − b0 > 0.

Next, we proceed exactly as we did in (7.1). The only different detail is the ele-
mentary estimation sup|α−α0|≤η,v>0 | exp(a0(x+

α + iv))| < ∞. We then obtain the

bound D′
B exp(−ax(α) − By(α) − ε

√
a2 + B2) with some D′ > 0. Then with

D = D′ exp(b0y(α)) the estimation (7.2) follows.
The proofs for (7.3) and (7.4) are symmetric.

The previous lemma will be useful in Sect. 8 in establishing the asymptotics when
α0 ∈]0, π/2[. In the next lemma we will show the negligibility of the integrals in the
two cases where α0 = 0 or π/2. This will be useful in Sect. 9.

Remark 7.2 (Pole and branching point) In the next lemma and in Sect. 9 and 10, we
exclude the case γ2(xmax ,Y±(xmax )) = 0 [resp. γ1(X±(ymax ), ymax ) = 0] such
that the branching point and the pole of ϕ2(x) coincides. This case corresponds to
x∗ = xmax [resp. y∗ = ymax ], i.e. α∗ = 0 [resp. α∗∗ = π/2]. Note that we already
obtained the asymptotics of h1 and h2 in these specific cases in Proposition 3.8.

Lemma 7.3 (Negligibility of the integrals on S±
x,α and S±

y,α , case where α0 = 0 or
π/2)
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For any η > 0 small enough and any r0 > 0 there exists a constant D > 0 such
that for any couple (a, b) where

√
a2 + b2 > r0 and 0 < α(a, b) < η we have

∣

∣

∣

∫

S+
x,α

ϕ2(x)γ2(x, Y
+(x))

γ ′
y (x, Y+(x))

exp
( − ax − bY+(x)

)

dx
∣

∣

∣ ≤ D exp
(

− ax(α) − by(α) − ε2
√

a2 + b2
)

. (7.11)

Furthermore, if b > b0 we have

∣

∣

∣

∫

S+
x,α

exp((a0 − a)x + (b0 − b)Y+(x))
dx

γ ′
y (x, Y+(x))

∣

∣

∣ ≤ D exp
(

− ax(α) − by(α) − ε2
√

a2 + (b − b0)2
)

. (7.12)

The same estimations hold for S−
x,α . For any couple (a, b) such that

√
a2 + b2 > r0

and 0 < π/2 − α(a, b) < η, a symmetric result holds for the integrals on S+
y,α and

S−
y,α .

Proof Let α0 = 0 so that x(α0) = xmax . Our aim is to prove (7.11), which is then
reduced to the estimate

∣

∣

∣

∫

v>0

ϕ2(x
+
α + iv)γ2(x

+
α + iv, Y+(x+

α + iv))

γ ′
y (x

+
α + iv, Y+(x+

α + iv))
exp

( − aiv − b(Y+(x+
α + iv) − Y+(x+

α ))
)

dv

∣

∣

∣ ≤ D. (7.13)

Let us fix any η > 0 small enough and consider α ∈]0, η]. By (4.4) the denominator
γ ′
y(x,Y

+(x)) is zero at x = xmax but not at other points in a neighborhood of xmax .
Then by (5.10) we have

inf
0≤α≤η

|γ ′
y(x

+
α ,Y+(x+

α ))| > 0. (7.14)

The functionϕ2(x) has a branching point at xmax. But it follows from the representation
(3.2) that it is bounded in a neighborhood of xmax cut along the real segment due to
Remark 7.2. Hence, this integral has no singularity at v = 0 for any α ∈]0, η] so that

sup
0≤α≤η

ϕ2(x+
α )γ2(x+

α ,Y+(x+
α ))

γ ′
y(x

+
α ,Y+(x+

α ))
< ∞. (7.15)

Let us consider the asymptotics of the integrand in (7.13) as v → ∞. It is clear that
Y+(x+

α +iv) grows linearly as v → ∞ and so do functions γ2 and γ ′
y of this argument.

The function ϕ2(xα + iv) is defined by the formula of the analytic continuation

ϕ2(xα + iv) = − γ1(x
+
α + iv, Y−(x+

α + iv))ϕ1(Y
−(x+

α + iv)) + exp
(

a0(x
+
α + iv) + b0Y

−(x+
α + iv)

)

γ2(x
+
α + iv, Y−(x+

α + iv))
. (7.16)

We know that Y−(x+
α +iv) varies linearly as v → ∞, andmoreover ReY−(xα+iv) ≤

−c1 − c2v for all v ≥ 0 and α ∈]0, η] with some c1, c2 > 0. Then by Lemma B.2 in
Appendix C

|ϕ2(x
+
α + iv)| ≤ Cvλ−1 (7.17)
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for any α ∈]0, η] and v > V0 with some C > 0, V0 > 0 and λ < 1. Hence, the
integrand

ϕ2(x+
α + iv)γ2(x+

α + iv,Y+(x+
α + iv))

γ ′
y(x

+
α + iv,Y+(x+

α + iv))

is O(vλ−1) as v → ∞. The positivity of ReY+(x+
α + iv) −ReY+(x+

α ) for any v ≥ 0
and the inequality (7.10) in the exponent stay valid for any α ∈]0, η], so that the
exponential term is bounded in absolute value by exp(−cbv) with some c > 0. But
for η small enough, the assumption α(a, b) ∈]0, η] implies the arbitrary smallness
of b. In the limiting case b = 0 the integral in the l.h.s of (7.13) is not absolutely
convergent. In order to prove the required estimate (7.13), we proceed by integration
by parts. This integral equals

ϕ2(x
+
α + iv)γ2(x

+
α + iv, Y+(x+

α + iv))

γ ′
y (x

+
α + iv, Y+(x+

α + iv))(−ai − b(Y+(x+
α + iv))′v)

exp
(

− aiv − b(Y+(x+
α + iv) − Y+(xα))

) ∣

∣

∣

v=∞
v=0

(7.18)

−
∫ ∞
0

( ϕ2(x
+
α + iv)γ2(x

+
α + iv, Y+(x+

α + iv))

γ ′
y (x

+
α + iv, Y+(x+

α + iv))(−ai − b(Y+(x+
α + iv))′v)

)′
v
exp

( − aiv − b(Y+(x+
α + iv) − Y+(x+

α ))
)

dv.

(7.19)

Note that although in this case x+
α0

= xmax which is a branching point for Y+(x), the
first and second derivatives are bounded

sup
α∈[0,η]

∣

∣

∣Y (x+
α + iv)′

∣

∣

∣

v=0

∣

∣

∣ < ∞, sup
α∈[0,η]

∣

∣

∣Y (x+
α + iv)′′

∣

∣

∣

v=0

∣

∣

∣ < ∞ (7.20)

by remark (5.10). Furthermore,Y±(x+
α +iv)′ is of the constant order andY±(x+

α +iv)′′
is not greater than O(1/v) as v → ∞.

The term (7.18) at v = 0 is bounded in absolute value by some constant due to
(7.15) and (7.20). It converges to zero as v → ∞ by the statements above for any
α ∈ [0,∞], a, b ≥ 0. To evaluate (7.19), we compute the derivative in its integrand
and show that it is of order O(vλ−2) as v → ∞. We skip the technical details of this
computation but outline the fact that ϕ2(x+

α + iv)′v is computed via the representation
(7.16) and |ϕ1(Y−(x+

α +iv))′v| is evaluated again by LemmaB.2. Namely, it is of order
not greater than O(vλ−2) as v → ∞. Thus, the integral (7.19) is absolutely convergent
for any a, b ≥ 0 and can be bounded by some constant as well. This finishes the proof
of (7.11). The proof of (7.12) is symmetric.

Note that the proof of Lemma 7.1 essentially uses the result of Lemma 3.10 which
bounds the Laplace transforms. The proof of Lemma 7.3 uses a stronger result stated
in Appendix C which gives a more precise estimate of the Laplace transform near
infinity.

Following the lines of the proof we could establish a better estimate, namely the
one that the integral is bounded by some universal constant divided by a, but we do
not need it for our purposes.
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Remark 7.4 (Negligibility) When α(a, b) → α0 ∈]0, π/2[, Equations (7.1), (7.2),
(7.3), (7.4) of Lemma7.1 give quite satisfactory estimateswhich prove the negligibility
of the integrals on the contours S±

x,α and S±
y,α with respect to integrals on contours

�x,α and �y,α , see Lemma 8.1 below. In fact

exp(−ax(α) − by(α) − ε2
√
a2 + b2)

b
= o

(exp(−ax(α) − by(α))
4
√
a2 + b2

)

,

exp(−ax(α) − by(α) − ε2
√
a2 + b2)

a
= o

(exp(−ax(α) − by(α))
4
√
a2 + b2

)

.

Whenα(a, b) → 0 orπ/2, Equations (7.11) and (7.12) of Lemma 7.3 give satisfactory
estimates which prove the negligibility which will be useful in Sect. 9 when computing
the asymptotics along the axes.

8 Essential part of the asymptotic andmain theorem

This section is dedicated to the asymptotics of g(a, b) = I1+ I2+ I3 when α(a, b) →
α0 ∈]0, π/2[. The next lemma determines the asymptotics of the integrals on the lines
of steepest descent �x,α and �y,α of the shifted contours.

For any couple (a, b) ∈ R
2+ we define α(a, b) as the angle in [0, π/2] such that

cos(α) = a√
a2+b2

and sin(α) = b√
a2+b2

and we define r ∈ R+ such that r =√
a2 + b2.

Lemma 8.1 (Contribution of the saddle point to the asymptotics) Let α0 ∈]0, π/2[.
Let α(a, b) → α0 and r = √

a2 + b2 → ∞. Then for any n ≥ 0 we have

1

2π i

∫

�x,α

ϕ2(x)γ2(x, Y
+(x))

γ ′
y (x, Y+(x))

exp(−ax − bY+(x))dx + 1

2π i

∫

�y,α

ϕ1(y)γ1(X
+(y), y)

γ ′
x (X+(y), y)

exp(−aX+(y) − by)dy

+ 1

2π i

∫

�x,α

exp((a0 − a)X+(y) + (b0 − b)y)
dy

γ ′
x (X+(y), y)

∼ exp(−ax(α(a, b)) − by(α(a, b)))
n

∑

k=0

ck (α(a, b))
4√
a2 + b2(a2 + b2)k/2

(8.1)

with some constants c0(α), c1(α), . . . , cn(α) continuous at α0. Namely

c0(α) = γ1(x(α), y(α))ϕ1(y(α)) + γ2(x(α), y(α))ϕ2(x(α)) + exp(a0x(α) + b0y(α))
√

2π(σ11 sin2(α) + 2σ12 sin(α) cos(α) + σ22 cos2(α))

× C(α), (8.2)

where

C(α) =
√

sin(α)

γ ′
y(x(α), y(α))

=
√

cos(α)

γ ′
x (x(α), y(α)

.
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Proof Consider the first integral. We make the change of variables x = x(i t, α), see
Sect. 5 and Appendix A. Then the sum of integrals becomes

exp(−ax(α) − by(α))

2π

∫ ε

−ε

f (i t, α) exp(−
√

a2 + b2t2)dt

where

f (i t, α) = ϕ2(x(i t, α))γ2(x(i t, α),Y+(x(i t, α)))

γ ′
y(x(i t, α),Y+(x(i t, α)))

x ′
ω(i t, α).

We take �(α0) from Lemma A.1 where K and η are defined in this lemma. For any
α ∈ [α0 − η, α0 + η] and t ∈ [−ε, ε] we have

∣

∣

∣ f (i t, α) −
2n
∑

l=0

f (l)(0, α)
(i t)l

l!
∣

∣

∣ ≤ C |t |2n+1

with the constant

C = sup
|ω|=K ,

|α−α0|≤η

∣

∣

∣

f (ω, α) − ∑2n
l=0 f (l)(0, α)ωl

l!
ω2n+1

∣

∣

∣

by the maximummodulus principle and the fact that f (ω, α) is in class C∞ in�(α0).
The integral

∫ ε

−ε

t l exp(−
√

a2 + b2t2)dt

equals 0 if l is odd. By the change of variables s = 4
√
a2 + b2t it equals

(l − 1)(l − 3)...(1)

2l/2

√
π

(
4
√
a2 + b2)l+1

+ O
(exp(−√

a2 + b2ε)

(
4
√
a2 + b2)l+1

)

,
√

a2 + b2 → ∞

if l is even. The constant comes from the fact that
∫ +∞
−∞ t l e−s2ds = (l−1)(l−3)...(1)

2l/2
√

π .
By the same reason

∫ ε

−ε

|t |2n+1 exp(−
√

a2 + b2t2)dt = O
( 1

(
4
√
a2 + b2)2n+2

)

,
√

a2 + b2 → ∞.

The representation (8.1) for the first integral follows with the constants

c1l (α) = (l − 1)(l − 3)...(1)

2l/2

√
π

2π

(−1)l f (2l)(0, α)

(2l)! .
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In particular

c10(α) = 1

2
√

π
× γ2(x(α), y(α))ϕ2(x(α))

γ ′
y(x(α), y(α))

× x ′
ω(0, α).

Using the expressions (A.1) and (5.4), we get

c10(α) = γ2(x(α), y(α))ϕ2(x(α))
√

2π(σ11 sin2(α) + 2σ12 sin(α) cos(α) + σ22 cos2(α))
×

√

sin(α)

γ ′
y(x(α), y(α))

.

In the same way, using the variable y instead of x , we get the asymptotic expansions of
the second and the third integral with constants c20(α), . . . , c2n(α), c30(α), . . . , c3n(α).
Namely,

c20(α) + c30(α) = γ1(x(α), y(α))ϕ1(y(α)) + exp(a0x(α) + b0y(α))
√

2π(σ11 sin2(α) + 2σ12 sin(α) cos(α) + σ22 cos2(α))

×
√

cos(α)

γ ′
x (x(α), y(α))

.

By (5.3) sin(α)γ ′
x (x(α), y(α)) = cos(α)γ ′

y(x(α), y(α)). This implies the representa-

tion (8.1) and concludes the proof with ck(α) = ∑3
i=1 c

i
k(α).

We will justify later that the constants c0(α) are not zero. We now turn to the main
result of the paper.

Theorem 4 (Asymptotics in the quadrant, general case)We consider a reflected Brow-
nian motion in the quadrant of parameters (�,μ, R) satisfying conditions of Propo-
sition 2.1 and Assumption 1. Then, the Green’s density function g(r cos(α), r sin(α))

of this process has the following asymptotics for all n ∈ N when α → α0 ∈ (0, π/2)
and r → ∞:

• If α∗ < α0 < α∗∗ then

g(r cos(α), r sin(α)) ∼
r→∞
α→α0

e−r(cos(α)x(α)+sin(α)y(α)) 1√
r

n
∑

k=0

ck(α)

rk
. (8.3)

• If α0 < α∗ then

g(r cos(α), r sin(α)) ∼
r→∞
α→α0

c∗e−r(cos(α)x∗+sin(α)y∗) + e−r(cos(α)x(α)+sin(α)y(α)) 1√
r

n
∑

k=0

ck (α)

rk
.

(8.4)
• If α∗∗ < α0 then

g(r cos(α), r sin(α)) ∼
r→∞
α→α0

c∗∗e−r(cos(α)x∗∗+sin(α)y∗∗) + e−r(cos(α)x(α)+sin(α)y(α)) 1√
r

n
∑

k=0

ck (α)

rk

(8.5)
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where explicit expressions of the saddle point coordinates x(α) and y(α) are given by
(5.5) and (5.6), the coordinates of the poles x∗, y∗, y∗∗, x∗∗ are given by (6.1) and
(6.2), and the constants are given by

c∗ = (−resx=x∗ϕ2(x))γ2(x
∗, y∗)

γ ′
y(x∗, y∗)

> 0 and c∗∗ = (−resy=y∗∗ϕ1(y))γ1(x
∗∗, y∗∗)

γ ′
y(x∗∗, y∗∗)

> 0

where the ck are constants depending on α and such that ck(α) −→
α→α0

ck(α0) where

c0(α) is given by (8.2). We have c0(α) > 0 at least when α∗ < α0 < α∗∗ where it
gives the dominant term of the asymptotics in (8.3).

Proof The theorem follows directly from combining several lemmas. By Lemma 4.1
the inverse Laplace transform g(a, b) can be expressed as of the sum of three simple
integrals I1+ I2+ I3. Those integrals have been rewritten in Lemma 6.2 by the residue
theorem as the sum of residues and integrals whose contour locally follows the steepest
descent line through the saddle point. This has been done in Sect. 6 using Morse’s
Lemma, see Appendix A. Residues are present if 0 < x∗ < x(α) or 0 < y∗∗ < y(α).
In addition, we proved in Lemma 7.1 the negligibility of the integrals of the lines S±

x,α
and S±

y,α compared to the integrals on the steepest descent lines. The main asymptotics
are then given by the poles plus the asymptotics of the steepest descent integrals. A
disjunction of cases concerning the pole’s contributions gives the three cases of the
theorem (recall that α∗ < α∗∗). In the second case, when α0 < α∗, ϕ2 has a pole
and then c∗ �= 0 because we have r12

r22
>

−Y±(xmax )
xmax

which implies γ2(x∗, y∗) �= 0.
The same holds for c∗∗. Finally, Lemma 8.1 gives the desired asymptotic expansion
of the integrals on the lines of the steepest descent. The fact that c0(α0) �= 0 when
α∗ < α0 < α∗∗ is postponed to Lemma 8.2 and Lemma 8.3.

The constants c0(α) shall not be zero at least when α∗ < α0 < α∗∗, that is when
the poles are not involved in the asymptotics. We divide the proof into two lemmas.

Most of the quantities studied so far depend on the starting point of the process,
even if this dependence is not explicit in the notation. In the following, we add a power
z0 (or (a0, b0)) in the notation of the objects which correspond to a process whose
starting point is z0 = (a0, b0). For example, we will note hz01 or ϕ

z0
1 when we want to

emphasise the dependency on the starting point.

Lemma 8.2 (Non nullity of the constant c0(α) for at least a starting point) If α ∈
(

0, π
2

) \{α∗, α∗∗}, there exists some starting point z0 ∈ R
2+ such that cz00 (α) �= 0.

Proof Let z0 = (a0, b0) the starting point of the process. We proceed by contradiction
assuming that c(a0,b0)

0 (α) = 0 for all a0, b0 ≥ 0. Since x(α) ≤ 0 or y(α) ≤ 0, we
suppose without loss of generality that y(α) ≤ 0. We have then, by (8.2) and the
continuation formula:

c1ϕ
(a0,b0)
1 (y(α)) − c2ϕ

(a0,b0)
1 (Y−(x(α))) = γ2(x(α), y(α))ea0x(α)+b0Y−(x(α))

−γ2(x(α),Y−(x(α)))ea0x(α)+b0 y(α)

(8.6)
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with c1 = γ1(x(α),Y−(x(α)))γ2(x(α), y(α)) and c2 = γ1(x(α),Y−(x(α)))γ2(x(α),

Y−(x(α))). We remark that γ2(x(α), Y−(x(α))) �= 0 since we have assumed α �= α∗.
The right term of (8.6) is unbounded on the set of all (a0, b0) belonging to R

2+ since
Y−(x(α)) < y(α) = Y+(x(α)). Then, it is sufficient to show that the supremum of
the left term is bounded according to (a0, b0). We denote by h(a0,b0)

1 the density of H1
according to the Lebesgue measure corresponding to the starting point (a0, b0). We
have then

c1ϕ
(a0,b0)
1 (y(α)) − c2ϕ

(a0,b0)
1 (Y−(x(α)))

=
∫ ∞

0

(

c1e
y(α)z − c2e

Y−(x(α))z
)

h(a0,b0)
1 (z)dz =: I . (8.7)

Similarly to the proof of Lemma 3.5, we introduce T as the first hitting time of the
axis {x = 0}. By the strong Markov property, we obtain in the same way:

I = E(a0,b0)

[

1T<+∞E
(0,Z2T )

[∫ +∞
0

1{0}×R+ (Zt )
(

c1e
y(α)Z2t − c2e

Y−(x(α))Z2t
)

dL1t

]]

(8.8)

=
∫ +∞
0

∫ +∞
0

(

c1e
y(α)z − c2e

Y−(x(α))z
)

h(0,y)
1 (z)dzP(T < +∞, Z2

T = dy) (8.9)

=
∫ +∞
0

(

c1ϕ
(0,y)
1 (yα) − c2ϕ

(0,y)
1 (Y−(xα))

)

P(T < +∞, Z2
T = dy). (8.10)

Using the identity (8.6) in (8.10) (where we see the relevance of going to the y-axis),
we get the bound

|I | ≤ |γ2(x(α), y(α))| + |γ2(x(α),Y−(x(α)))| (8.11)

since y(α) ≤ 0. The right term of (8.6) is therefore bounded in (a0, b0), and thus a
contradiction has been reached. This completes the proof.

Lemma 8.3 (Nonnullity of the constant c0(α) for all starting points) Forallα ∈ (

0, π
2

)

such that α∗ < α < α∗∗ and z0 ∈ R
2+, we have c

z0
0 (α) �= 0.

Proof Denote z0 = (a0, b0) the point obtained in Lemma 8.2 such that cz00 (α) �= 0. By
continuity of the Laplace transforms ϕ

z0
1 and ϕ

z0
2 in z0 (see the proof of Lemma 3.6)

cz
′
0(α) �= 0 for all z′0 in an open neighborhood V of z0. Let z′′0 ∈ R

2+ be the starting

point of the process Z (z′′0) and let T = inf{t ≥ 0, Z
(z′′0)
t ∈ V } be the hitting time of V .

We have Pz′′0 (T < +∞) = p > 0. By the strong Markov property,
gz

′′
0 (r cos(α), r sin(α)) ≥ p inf

z′0∈V
gz

′
0 (r cos(α), r sin(α)) (8.12)

≥ p inf
z′0∈V

[

c
z′0
0 (α)(1 + or→∞(1))

]

e−r(cos(α)x(α)+sin(α)y(α)) 1√
r
. (8.13)

Furthermore, V can be chosen bounded and such that inf z′0∈V c
z′0
0 (α) > 0. The issue

is that the term or→∞(1) may depend on z′0. We then refer to the proof of Lemma 7.1.
We remark that the only quantity depending on the initial condition is the constant D
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of Lemma 7.1, which is based on Lemma 3.10. If the supremum on z′0 ∈ V of the
quantity of Lemma 3.10 is finite, then the result holds. This fact is verified easily from

the proof of this lemma, because V is bounded and ϕ
z′0
1 (0) is continuous in z′0.

9 Asymptotics along the axes: ˛ → 0 or ˛ → �
2

In this section, we study the asymptotics of the Green’s function g along the axes. We
recall the assumptions α∗ �= 0 and α∗∗ �= π/2 made in Remark 7.2.

Let us recall that for any couple (a, b) ∈ R
2+ we define r = √

a2 + b2 and α(a, b)
as the angle in [0, π/2] such that cos(α) = a√

a2+b2
and sin(α) = b√

a2+b2
.

Lemma 9.1 (Contribution of the saddle point to the asymptotics when α → 0 or π/2)

(i) Let a → ∞, b > 0 and α(a, b) → 0. Then the asymptotics of (8.1) remain valid
with c0(α) → 0 as α → 0. Moreover, we have c0(α) ∼ c′α and c1(α) ∼ c′′ as
α → 0 where c′ and c′′ are non-null constants at least when α∗ = −∞ (i.e. when
there is no pole for ϕ2).

(ii) When b → ∞, a > 0 and α(a, b) → π/2 the same result holds.

Remark 9.2 (Competition between the two first term of the asymptotics) The previous
lemma states that when α → 0 and r → ∞, there is a competition between the first
two terms of the sum of the asymptotic development given in (8.1). Namely, the first
term c0(α)√

r
∼ c′α√

r
∼ c′b

r
√
r
and the second term c1(α)

r
√
r

∼ c′′
r
√
r
may have the same order

of magnitude. If b → 0, the second term is dominant. If b → c where c is a positive
constant, they both contribute to the asymptotics. If b → ∞ (and also b = o(a) since
α → 0), the first term is dominant.

Proof We first prove (i). For any α close to 0, �x,α lies in a neighborhood of x(α).
Using the continuation formula of ϕ2(x) (3.2), the definition of F (5.2), and the fact

that �x,α = ←−−−−−−
X+(�y,α)−−−−−−→ (5.9), the first integral of (8.1) becomes

e−ax(α)−by(α)

2iπ

∫

←−−−−−−
X+(�y,α)−−−−−−→

γ2(x,Y+(x))
(

− γ1(x,Y−(x))ϕ1(Y−(x)) − ea0x+b0Y−(x)
)

γ2(x,Y−(x))γ ′
y(x,Y

+(x))

× exp
(

√

a2 + b2F(x, α)
)

dx .

Let us make the change of variables x = X+(y). Taking into account the fact that
Y+(X+(y)) = y, the relation γ ′

x (X
+(y), y)(X+(y))′ + γ ′

y(X
+(y), y) ≡ 0 and the

direction of
←−−−−−−
X+(�y,α)−−−−−−→, the first integral becomes

e−ax(α)−by(α)

2iπ

∫

�y,α

γ2(X
+(y), y)

(

− γ1(X
+(y), Y−(X+(y)))ϕ1(Y

−(X+(y))) − ea0X
+(y)+b0Y

−(X+(y))
)

γ2(X+(y), Y−(X+(y)))γ ′
x (X+(y), y)
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× exp
(

√

a2 + b2G(y, α)
)

dy. (9.1)

For the second and the third integral, we use the representation valid for a > a0. We
then have to find the asymptotics of the integral

e−ax(α)−by(α)

2iπ

∫

�y,α

γ2(X
+(y), Y−(X+(y)))H(X+(y), y) − γ2(X

+(y), y)H(X+(y), Y−(X+(y)))

γ2(X+(y), Y−(X+(y)))γ ′
x (X+(y), y)

× exp
(

√

a2 + b2G(y, α)
)

dy

where

H(X+(y), y) = γ1(X
+(y), y)ϕ1(y) + exp(a0X

+(y) + b0y).

Finally, note that with notation in (4.3)

Y−(X+(y)) = c(X+(y))

a(X+(y)) × Y+(X+(y))
= σ11(X+(y))2 + 2μ1X+(y)

σ22y
.

The function X+(y) is holomorphic in a neighborhood of Y±(xmax ). By (4.5) we
have γ ′

x (X
+(y), y) =

√

˜b2(y) − 4̃a(y)̃c(y) which is holomorphic in a neighborhood
ofY±(xmax ) and different fromzero. Finally, γ2(xmax,Y±(xmax )) �= 0 by our assump-
tion in Remark 7.2. It follows that the integrand in (9.1) is a holomorphic function in a
neighborhood of Y±(xmax ). Then, we can apply the saddle point procedure of Lemma
8.1 to G(y, α) with α = 0 and where we replace the function f (i t, α) by

f (i t, α) = [γ2(X+(y(i t, α)),Y−(X+(y(i t, α))))H(X+(y(i t, α)), y(i t, α))

− γ2(X
+(y(i t, α)), y(i t, α))H(X+(y(i t, α)), Y−(X+(y(i t, α))))]

× y′
ω(i t, α)

γ2(X+(y(i t, α)), Y−(X+(y(i t, α))))γ ′
x (X+(y(i t, α)), y(i t, α))

where y(i t, α) is the path given by the parameter-dependent Morse Lemma (see
Lemma A.1). We get the asymptotic development (8.1) as α → 0 and then have

a competition c0(α) + c1(α)
r + O

(

1
r2

)

between c0(α) = 1
2
√

π
f (0, α) and c1(α) =

− 1
4
√

π

f ′′
ω (0,α)

4! . When α → 0, we have c0(α) ∼ c′α and c1(α) ∼ c′′ for non-null
constants c′ and c′′, see Lemma 9.3 and Remark 9.4 below.

The proof of (ii) is exactly the same, except that we use the other representation of
I3(a, b).

Lemma 9.3 (Non nullity of c′) When α → 0 we have c0(α) ∼ c′α and the constant
c′ is non-null at least when α∗ = −∞ (i.e. when there is no pole for ϕ2).

Proof It is clear that c0(0) = 0 because c0(α) coincides with (8.2) by uniqueness of
asymptotic development, and this expression tends to 0 as α goes to 0 due toC(α). Let
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us now consider the behaviour of c0(α)when α → 0. Recall that c0(α) = 1
2
√

π
f (0, α)

with the notation of the proof of Lemma 9.1. Invoking Lemma 3.1, we obtain

y(α) − Y−(X+(y(α))) = Y+(X+(y(α)) − Y−(X+(y(α)))

= 2

σ22

√

(σ11σ22 − σ 2
12)(xmax − X+(y(α))(X+(y(α)) − xmin).

We also remark that (X+(y))′
∣

∣

∣

y=y(0)
= 0 and (X+(y))′′

∣

∣

∣

y=y(0)
= − σ22

γ ′
x (xmax ,Y±(xmax ))

,

so that

xmax − X+(y(α)) = σ22

2γ ′
x (xmax ,Y±(xmax ))

α2(1 + o(1)), as α → 0.

Finally

y(α) − Y−(X+(y(α))) ∼
√

2(σ11σ22 − σ 2
12)(xmax − xmin)

2σ22γ ′
x (xmax ,Y±(xmax ))

× α ∼ � × α,

where � is defined as the constant in front of α.
Since γ2(x, y) = r12x + r22y and γ2(xmax ,Y−(xmax ))γ

′
x (xmax ,Y−(xmax )) �= 0,

we obtain

c0(α) = −r22H(xmax , Y±(xmax )) × (�α) + γ2(xmax , Y±(xmax ))H ′
y (xmax , Y±(xmax )) × (�α) + o(α)

γ2(xmax , Y−(xmax ))γ ′
x (xmax , Y−(xmax )) + o(1)

= α(c′ + o(1))

as α → 0 where c′ is the corresponding constant.
Let us prove that c′ �= 0. We have to show that

−r22H(xmax ,Y
±(xmax )) + γ2(xmax ,Y

±(xmax ))H
′
y(xmax ,Y

±(xmax )) �= 0

i.e. that

−r22
(

γ1(xmax , Y
±(xmax ))ϕ1(Y

±(xmax )) + ea0xmax+b0Y
±(xmax )

)

+ γ2(xmax , Y
±(xmax ))

×
(

r21ϕ1(Y
±(xmax )) + γ1(xmax , Y

±(xmax ))ϕ
′
1(Y

±(xmax )) + b0e
a0xmax+b0Y

±(xmax )
)

�= 0.

The equation can be rewritten as

c1ϕ1(Y
±(xmax )) + c2ϕ

′
1(Y

±(xmax )) �= (c3 + c4b0)e
a0xmax+b0Y±(xmax ) (9.2)

with c1, c2, c3, c4 constants not depending on the initial conditions. Note that c3 =
−r22 �= 0 by (2.1) and c4 = γ2(xmax ,Y±(xmax )) �= 0 by the assumption in
Remark 7.2. Furthermore, with the same method employed in the proof of Lem-
mas 3.5 and 8.2, the left term of (9.2) is bounded in (a0, b0). Since xmax > 0 and
Y±(xmax ) < 0, the right term of (9.2) is not bounded in (a0, b0). Hence, (9.2) holds
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for at least one (a0, b0). By a similar argument developed in the proof of Lemmas 3.6
and 8.3 (using the fact that α∗ = −∞), since c′ �= 0 at least for one starting point
(a0, b0), c′ �= 0 for all starting points. Finally, (9.2) holds for every initial condition.
This concludes the proof that c0(α) ∼ c′α for a non-null constant c′.

Remark 9.4 (Non nullity of c′′) We note here that c′′ �= 0. A proof inspired by what
has been done in the previous lemma to show that c′ �= 0 would work. The same
techniques have also been employed in Lemmas 3.5 and 3.6 to characterize the poles
by showing the non nullity of a constant, and in Lemmas 8.2 and 8.3 to show the non
nullity of c0(α).

We now have everything we need to prove our second main result, which states the
full asymptotic expansion of the Green’s function g along the edges.

Theorem 5 (Asymptotics along the edges for the quadrant)We now assume that α0 =
0 and let r → ∞ and α → α0 = 0. In this case, we have c0(α) ∼

α→0
c′α and

c1(α) ∼
α→0

c′′ for some constants c′ and c′′ which are non-null at least when α∗ = −∞
(i.e. when there is no pole for ϕ2). Then, the Green’s function g(r cos(α), r sin(α))

has the following asymptotics:

• When α∗ < 0 the asymptotics given by (8.3) remain valid. In particular, we have

g(r cos(α), r sin(α)) ∼
r→∞
α→0

e−r(cos(α)x(α)+sin(α)y(α)) 1√
r

(

c′α + c′′

r

)

.

• When α∗ > 0 the asymptotics given by (8.4) remain valid. In particular, we have

g(r cos(α), r sin(α)) ∼
r→∞
α→0

c∗e−r(cos(α)x∗+sin(α)y∗).

Therefore, when α∗ = −∞, there is a competition between the two first terms of the
sum

∑n
k=0

ck (α)

rk
to know which of c′α and c′′

r is dominant. More precisely:

• If r sin α −→
r→∞
α→0

∞ then the first term is dominant.

• If r sin α −→
r→∞
α→0

c > 0 then both terms contribute and have the same order of

magnitude.
• If r sin α −→

r→∞
α→0

0 then the second term is dominant.

A symmetric result holds when we take α0 = π
2 . The asymptotics given by (8.3)

remain valid when π
2 < α∗∗ and (8.5) remain valid when α∗∗ < π

2 and there is a
competition between the two first terms of the sum to know which one is dominant
which in turn depends on the limit of r cos(α).

Proof The theorem follows directly from several lemmas put together. First, in
Lemma 4.1 we invert the Laplace transform and we express the Green’s function
g as the sum of three integrals. Then, in Lemma 6.2 we shift the integration contour
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of the integrals to reveal the contribution of the poles to the asymptotics by applying
the residue theorem. In Lemma 7.3 we show the negligibility of some integrals which
implies that the asymptotic expansion is given by the integrals on the contour of steep-
est descent. Finally, Lemma 9.1 states the asymptotic expansion of these integrals
given by the saddle point method.

10 Asymptotics when a pole meets the saddle point: ˛ → ˛∗ or
˛ → ˛∗∗

In this section we study the asymptotics of the Green’s function g(r cosα, r sin α)

when α → α0 in the special cases where α0 = α∗ or α0 = α∗∗, that is when the pole
meets the saddle point.

We introduce the following notation

R(α) = x ′
ω(0, α) =

√

2

F ′′
xx (x(α), α)

=
√

2

− sin(α)(Y+(x))′′ |x(α)

(10.1)

=
√

2 sin(α)γ ′
y(x(α), y(α))

σ11 sin2(α) + 2σ12 sin(α) cos(α) + σ22 cos2(α)
.

We recall that for (a, b) ∈ R
2+ we define r = √

a2 + b2 and we let α(a, b) be the
angle in [0, π/2] such that cos(α) = a√

a2+b2
and sin(α) = b√

a2+b2
.

Lemma 10.1 (Asymptotics of the integral on steepest descent line when α → α∗)
Letting α(a, b) → α∗ as r = √

a2 + b2 → ∞. Then

I := 1

2π i

∫

�x,α

γ2(x,Y+(x))ϕ2(x)

γ ′
y(x,Y

+(x))
exp

(
√

a2 + b2F(x, α(a, b))
)

dx

has the following asymptotics.

(i) If
√
a2 + b2(α(a, b) − α∗)2 → 0, then

I ∼ −1

2

γ2(x∗, y∗)resx=x∗ϕ2

γ ′
y(x

∗, y∗)
if α(a, b) > α∗,

I ∼ 1

2

γ2(x∗, y∗)resx=x∗ϕ2

γ ′
y(x

∗, y∗)
if α(a, b) < α∗.

(ii) If
√
a2 + b2(α(a, b) − α∗)2 → c > 0. Further, let

A(α∗) = −x ′
α(α∗)

R(α∗)
. (10.2)
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Then

I ∼ −1

2
exp(cA2(α∗))

(

1 − 

(√

cA(α∗)
))

× γ2(x
∗, y∗)resx=x∗ϕ2

γ ′
y(x∗, y∗)

if α(a, b) > α∗,

I ∼ 1

2
exp(cA2(α∗))

(

1 − 

(√

cA(α∗)
))

× γ2(x
∗, y∗)resx=x∗ϕ2

γ ′
y(x∗, y∗)

if α(a, b) < α∗


(z) = 2√
π

∫ z

0
exp(−t2)dt . (10.3)

(iii) Let
√
a2 + b2(α(a, b) − α∗)2 → ∞. Then

I ∼ γ2(x∗, y∗)R(α∗)
2
√

πγ ′
y(x

∗, y∗)
× resx=x∗ϕ2

(x(α(a, b)) − x(α∗))
× 1

4
√
a2 + b2

.

Proof Proceeding as we did in Lemma 8.1, we obtain that

I ∼ 1

2π

ε
∫

−ε

f (i t, α(a, b)) exp(−
√

a2 + b2t2)dt (10.4)

where

f (i t, α(a, b)) = γ2(x(i t, α),Y+(x(i t, α)))ϕ2(x(i t, α))

γ ′
y(x(i t, α),Y+(x(i t, α)))

× x ′
ω(i t, α).

The function ϕ2 is a sum of a holomorphic function and of the term resx∗ϕ2
x−x∗ which after

the change of variables takes the form resx∗ϕ2
x(i t,ω)−x∗ .

We have x(0, α∗) = x(α∗). By the implicit function theorem there exists a function
ω(α) in the class C∞ such that

x(ω(α), α) ≡ x∗ ∀α : |α − α∗| ≤ η̃

for some η̃ small enough where ω(α∗) = 0. Furthermore, differentiating this equality,
we get

ω′(α) = −x ′
α(ω(α), α)

x ′
ω(ω(α), α)

,

so that

ω′(α∗) = − x ′
α(α∗)

x ′
ω(0, α∗)

.

The formula

ω(α) = (x(α∗) − x(α))

x ′
ω(0, α∗)

(1+o(1)) = (x(α∗) − x(α))

R(α∗)
(1+o(1)) as α → α∗ (10.5)
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provides the asymptotics of ω(α) as α → α∗. Note also that the main part of ω(α) is
real.

Let us introduce the function

�(ω, α) =
{

ω−ω(α)
x(ω,α)−x(ω(α),α)

if ω �= ω(α)
1

x ′
ω(ω(α),α)

if ω = ω(α).

This function is holomorphic inω for any fixed α and continuous as a function of three
real variables. Note that the integral (10.4) can be written as

1

2π i

ε
∫

−ε

f (i t, α)(i t − ω(α))
exp(−√

a2 + b2t2)

t + iω(α)
dt .

Furthermore, there exists a constant C > 0 such that

∣

∣

∣ f (i t, α)(i t − ω(α)) − f (0, α)(0 − ω(α))

∣

∣

∣ ≤ C |t |. ∀(i t, α) ∈ ˜�(0, α∗)

= {(ω, α) : |ω| ≤ K , |α − α∗| ≤ min(η, η̃)}. (10.6)

Indeed, it suffices to take C as the maximum of the modulus of

( f (ω, α)(ω − ω(α)) − f (0, α)(0 − ω(α)))ω−1

on {(ω, α) : |ω| = K , |α − α∗| ≤ min(η, η̃)} for η small enough. Moreover since
�ω(α) = o(
ω(α)) as α → α∗, then by Lemma (B.1) (i) for any α close to α∗ the
inequality

|t |
|t + iω(α)| ≤ 2

holds for all t ∈ R. The integral

∫

R

2 exp(−
√

a2 + b2t2)dt = O(
1

4
√
a2 + b2

)

is of smaller order than the asymptotics announced in the statement of the lemma.
Hence, it suffices to show that the integral

1

2π i

ε
∫

−ε

f (0, α)(0 − ω(α))
exp(−√

a2 + b2t2)

t + iω(α)
dt

has the expected asymptotics. Note that by (10.5)

ϕ(x(α))(−ω(α))x ′
ω(0, α) → resx∗ϕ as α → α∗,
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so that

f (0, α)(−ω(α)) → γ2(x∗, y∗)
γ ′
y(x

∗, y∗)
× resx∗ϕ.

It remains to study

1

2π i

ε
∫

−ε

exp(−√
a2 + b2t2)

t + iω(α)
dt .

For any t ∈ R \ [−ε, ε] the denominator in the integral is bounded from below

|t + iω(α)| ≥ ||t | − ω(α)| ≥ ε − ω(α) ≥ ε/2

for any α close enough to α∗ while

∫

R

exp(−
√

a2 + b2t2)dt = O(
1

4
√
a2 + b2

)

is of smaller order than the one stated in the lemma. Finally, it suffices to prove that

1

2π i

∫ ∞

−∞
exp(−√

a2 + b2t2)

t + iω(α(a, b))
dt (10.7)

has the right asymptotics. By a change of variables, equation (10.7) equals

1

2π i

∫ ∞

−∞
exp(−s2)

s + iω(α)
4
√
a2 + b2

ds. (10.8)

Now let α > α∗ [resp. α < α∗]. Then x(α) < x(α∗) [resp. x(α) > x(α∗)] and by
(10.5) 
ω(α) > 0 [resp. 
ω(α) < 0]. By Lemma B.1 (iii) this integral evaluates to

−1

2
exp(

√

a2 + b2ω2(α))
(

1 − 
(
4
√

a2 + b2ω(α))
)

if α > α∗

1

2
exp(

√

a2 + b2ω2(α))
(

1 − 
(− 4
√

a2 + b2ω(α))
)

if α < α∗.

If
√
a2 + b2(α(a, b) − α∗)2 → c ≥ 0 then by (10.5)

√
a2 + b2ω(α(a, b))2 →

cA2(α∗) and the results of (i) and (ii) are immediate. Now let
√
a2 + b2(α(a, b) −

α∗)2 → ∞. Then by Lemma B.1 (ii) the asymptotics of this integral are

√
π

2π i × (iω(α(a, b))) 4
√
a2 + b2

where the asymptotics of ω(α(a, b)) have been stated in (10.5). The result follows.
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It is useful to note that

− cos(α)x∗ − sin(α)y∗ = − cos(α)x(α) − sin(α)Y+(x(α)) + R−2(α∗)(x(α) − x∗)2(1 + o(1))

= − cos(α)x(α) − sin(α)Y+(x(α)) + A2(α∗)(α − α∗)2(1 + o(1)), α → α∗

(10.9)

with the notation R(α) and A(α) above in (10.1) and (10.2).
By Taylor expansion at x(α) and and by the definition of a saddle point (the first

derivative is zero):

− cos(α)x∗ − sin(α)y∗ = − cos(α)x(α) − sin(α)Y+(x(α))

−1

2
sin(α)(Y+(x))′′ |x=x(α) (x(α) − x∗)2(1 + o(1)), α → α∗.

We remind the reader that

−1

2
sin(α)(Y+(x))′′ |x=x(α)= (R(α))−2 = R(α∗)−2(1 + o(1)), α → α∗.

The following lemma is useful in determining the asymptotics of the value of I1
found in Lemma 6.2.

Lemma 10.2 (Combined contribution of the pole and saddle point to the asymptotics
when α → α∗) Let r = √

a2 + b2 → ∞ and α(a, b) → α∗. The sum

I :=
(−resx=x∗ϕ2(x)

)

γ2(x∗, y∗)
γ ′
y(x

∗, y∗)
exp(−ax∗ − by∗) × 1α<α∗

+ 1

2iπ

∫

�x,α

γ2(x,Y+(x))ϕ2(x)

γ ′
y(x,Y

+(x))
exp(−ax − bY+(x))dx (10.10)

has the following asymptotics.

(i) If α > α∗ and
√
a2 + b2(α(a, b) − α∗)2 → ∞. Then

I ∼ exp(−ax(α(a, b)) − by(α(a, b)))
4
√
a2 + b2

γ2(x∗, y∗)√
2π

√

σ11 sin2(α∗) + 2σ12 sin(α∗) cos(α∗) + σ22 cos2(α∗)
× resx∗ϕ2

x(α(a, b)) − x∗ × C(α∗),

where

C(α∗) =
√

sin(α∗)
γ ′
y(x

∗, y∗)
=

√

cos(α∗)
γ ′
x (x

∗, y∗)
.
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(ii) If α > α∗ and
√
a2 + b2(α(a, b) − α∗)2 → c > 0, then

I ∼ −1

2
exp(−ax∗ − by∗)

(

1 − 

(√

cA(α∗)
))

× γ2(x∗, y∗)resx=x∗ϕ2

γ ′
y(x

∗, y∗)
.

where A(α∗) and 
 are defined in (10.2), (10.1) and (10.3).
(iii) If

√
a2 + b2(α(a, b) − α∗)2 → 0, then

I ∼ −1

2
exp(−ax∗ − by∗) × γ2(x∗, y∗)resx=x∗ϕ2

γ ′
y(x

∗, y∗)
.

(iv) If α < α∗ and
√
a2 + b2(α(a, b) − α∗)2 → c > 0, then

I ∼ −1

2
exp(−ax∗ − by∗)

(

1 + 

(√

cA(α∗)
))

× γ2(x∗, y∗)resx=x∗ϕ2

γ ′
y(x

∗, y∗)
.

(v) If α < α∗ and
√
a2 + b2(α(a, b) − α∗)2 → ∞, then

I ∼ exp(−ax∗ − by∗) × −γ2(x∗, y∗)resx=x∗ϕ

γ ′
y(x

∗, y∗)
.

Proof Let us note that

∫

�x,α

γ2(x,Y+(x))ϕ2(x)

γ ′
y(x,Y

+(x))
exp(−ax − bY+(x))dx (10.11)

= exp(−ax(α) − by(α))

∫

�x,α

γ2(x,Y+(x))ϕ2(x)

γ ′
y(x,Y

+(x))
exp

(

√

a2 + b2F(x, α(a, b))
)

dx

(i) The result follows from the representation (10.11) and Lemma 10.1 (iii) with
R(α∗) defined in (10.1).

(ii) Invoking (10.9) the representation (10.11) can be also written as

exp(−ax∗ − by∗ −
√

a2 + b2A2(α∗)(α(a, b) − α∗)2(1 + o(1)))
∫

�x,α

γ2(x,Y+(x))ϕ2(x)

γ ′
y(x,Y

+(x))
exp(

√

a2 + b2F(x, α(a, b)))dx (10.12)

The result follows from Lemma 10.1 (ii).
(iii) We will consider three subcases.

If α(a, b) > α∗, the announced result follows from Lemma 10.1 (i) and from the
representation (10.12) where

√
a2 + b2A2(α∗)(α(a, b) − α∗) → 0.
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If α = α∗, then the contour �x,α is special and a direct computation leads to the
result. We refer to Lemma 19 of [14] which deals with a similar case.
If α(a, b) < α∗, then by Lemma 10.1 (i) the asymptotics of the second term of
(10.10) are the same as in the case α(a, b) > α∗ but with the opposite sign. It
should be summed with the first term. The sum of their constants 1/2−1 provides
the result.

(iv) By the representation (10.12) and Lemma 10.1 (ii) the asymptotics of the second
term of (10.10) are the same as in the case (ii) but with opposite sign. It should be
summed with the first term. The sum of their constants 1

2 (1 − 
(
√
cA(α∗))) − 1

leads to the result.
(v) By Lemma (10.1) (iii) and the representation (10.12) the second term of (10.10)

has the asymptotics

exp
(

− ax∗ − by∗ −
√

a2 + b2A2(α∗)(α(a, b) − α∗)2(1 + o(1))
)

×γ2(x∗, y∗)R(α∗)
2
√

πγ ′
y(x

∗, y∗)
× resx=x∗ϕ

(x(α(a, b)) − x(α∗))
× 1

4
√
a2 + b2

.

Since exp(−√
a2+b2A2(α∗)(α(a,b)−α∗)2)
(α(a,b)−α∗) 4√a2+b2

converges to 0 in this case, the order of the

second term in (10.10) is clearly smaller than the one of the first term which
dominates the asymptotics.

Remark 10.3 (Consistency of the results) The results of (i) and (v) are perfectly “con-
tinuous” with asymptotics along directions α → α∗, α < α∗ and α → α∗, α > α∗.
Namely, if in (i) we substitute ϕ(x(α)) instead of resx∗ϕ

x(α(a,b))−x∗ , we obtain the asymp-
totics for angles greater than α∗. The result (v) remains valid for angles less than
α∗.

We now summarize the previous results to obtain our final main result.

Theorem 6 (Asymptotics in the quadrant when the saddle pointmeets a pole)We now
assume that α0 = α∗ and let α → α∗ and r → ∞. Then, the Green’s density function
g(r cosα, r sin α) has the following asymptotics:

• When r(α −α∗)2 → 0 then the principal term of the asymptotics is given by (8.4)
but the constant c∗ of the first term has to be replaced by 1

2c
∗.

• When r(α − α∗)2 → c > 0 for some constant c then:

– If α < α∗ the principal term of the asymptotics is still given by (8.4) but the
constant c∗ of the first term has to be replaced by 1

2c
∗(1+ 
(

√
cA)) for some

constant A.
– If α > α∗ the principal term of the asymptotics is still given by (8.4) but the
constant c∗ of the first term has to be replaced by 1

2c
∗(1− 
(

√
cA)) for some

constant A.

Note that above 
(z) = 2√
π

∫ z
0 exp(−t2)dt.

• When r(α − α∗)2 → ∞ then:
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– If α < α∗ the principal term of the asymptotics is given by (8.4).
– If α > α∗ the principal term of the asymptotics is given by (8.3) and we have

c0(α) ∼
α→α∗

c
α−α∗ for some constant c.

A symmetric result holds when we assume that α0 = α∗∗.

Proof The theorem follows directly from several lemmas put together. The Green’s
function g is still given by the sum I1 + I2 + I3, see Lemma 4.1. We again apply
Lemma 6.2 to take into account the contribution of the poles and Lemma 7.1 which
shows the negligibility of some integrals in the final asymptotics. Furthermore, by

the proof of Lemma 8.1, I2 + I3 = O
(

e−r cos(α∗)x(α∗)−r sin(α∗)y(α∗))√
r

)

when r → ∞ and

α → α∗ (recall that α∗ < α∗∗). With Lemma 10.2, we see in each case that I2 + I3
is negligible compared to I1 when r → ∞ and α → α∗. Indeed, in the case α > α∗
and r(α − α∗)2 → ∞, the domination of I1 is due to the term 1

x(α)−x∗ . For the other

cases, the domination of I1 is due to the factor 1√
r
in the asymptotics of I2 + I3.

The proof is similar for α0 = α∗∗.

11 Asymptotics in a cone

From the quadrant to the cone

Let us describe the linear transformation which maps the reflected Brownian motion
in the quarter plane (of covariance matrix � and reflecting vectors R1 and R2) to a
reflected Brownian motion in a wedge with identity covariance matrix. We take

β = arccos

(

− σ12√
σ11σ22

)

∈ (0, π) (11.1)

and we define

T =
⎛

⎝

1

sin β
cot β

0 1

⎞

⎠

⎛

⎜

⎜

⎝

1√
σ11

0

0
1√
σ22

⎞

⎟

⎟

⎠

(11.2)

which satisfies T�T
 = Id. Then, if Zt is a reflected Brownianmotion in the quadrant
of parameters (�,μ, R), the process ˜Zt = T Zt is a reflected Brownian motion in
the cone of angle β and of parameters (T�T
, Tμ, T R) = (Id, μ̃, T R). The new
reflection matrix T R correspond to reflections of angles δ and ε defined in (0, π) by

tan δ = sin β

r12
r22

√

σ22
σ11

+ cosβ
and tan ε = sin β

r21
r11

√

σ11
σ22

+ cosβ
. (11.3)
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The new drift has an angle θ = arg μ̃ with the horizontal axis and satisfies

tan θ = sin β

μ1
μ2

√

σ22
σ11

+ cosβ
. (11.4)

The assumption μ1 > 0 and μ2 > 0 is equivalent to θ ∈ (0, β).

Green’s functions in the cone

Let us denote gz0 the density of G(z0, ·). For z ∈ R
2+ we have

gz0(z) =
∫ ∞

0
pt (z0, z)dt .

Let us recall that we have denoted ˜G(z̃0, ˜A) the Green measure of ˜Zt and g̃z̃0 (̃z) its
density. It is straightforward to see that for A ∈ R

2+ we have G(z0, A) = ˜G(T z0, T A)

and then

gz0(z) = | det T |̃gT z0(T z) = 1√
det�

g̃z̃0 (̃z) (11.5)

where z̃0 = T z0 and z̃ = T z.

Polar coordinates

For any z = (a, b) ∈ R
2+ we may define the polar coordinate in the quadrant (r , α) ∈

R+ × [0, π
2 ] by

z = (a, b) = (r cosα, r sin α). (11.6)

We now define the polar coordinates in the β-cone (ρ, ω) by

z̃ = (ρ cosω, ρ sinω). (11.7)

For z̃ = T z we obtain by a direct computation that

(r cosα, r sin α) = (ρ
√

σ11 cos(β − ω), ρ
√

σ22 sinω). (11.8)

and that

tanω = sin β

1
tan α

√

σ22
σ11

+ cosβ
. (11.9)

We deduce that

g̃z̃0(ρ cosω, ρ sinω) = √
det� gz0(ρ

√
σ11 cos(β − ω), ρ

√
σ22 sinω). (11.10)
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Saddle point

The ellipse E = {(x, y) ∈ R
2 : γ (x, y) = 0} can be easily parametrized by the

following,

E = {(̃x(t), ỹ(t)) : t ∈ [0, 2π ]} ,

where
{

x̃(t) = xmax+xmin
2 + xmax−xmin

2 cos(t),

ỹ(t) = ymax+ymin
2 + ymax−ymin

2 cos(t − β).
(11.11)

see Proposition 5 of [23]. Noticing that

− cos θ = xmax + xmin

xmax − xmin
, and − cos(β − θ) = ymax + ymin

ymax − ymin

and that

2|μ̃| = √
σ11(xmax − xmin) sin β = √

σ22(ymax − ymin) sin β

we obtain

{

x̃(t) = |μ̃|√
σ11 sin β

(cos t − cos θ) = 2|μ̃|√
σ11 sin β

sin( θ−t
2 ) sin( t+θ

2 )

ỹ(t) = |μ̃|√
σ22 sin β

(cos(t − β) − cos(θ − β)) = 2|μ̃|√
σ22 sin β

sin( θ−t
2 ) sin( t+θ−2β

2 ).

(11.12)
The following result gives an expression of the saddle point in terms of the polar
coordinate in the cone.

Proposition 11.1 (Saddle point in polar coordinate) For α ∈ (0, π
2 ) and ω ∈ (0, β)

previously defined and linked by (11.9) we have

(x(α), y(α)) = (̃x(ω), ỹ(ω)) (11.13)

where (x(α), y(α)) is the saddle point defined in (5.1).

Proof Letting α ∈ (0, π
2 ), we are looking for the point (x(α), y(α)) which maximizes

the quantity x cosα+ y sin α for (x, y) in the ellipse E = {(x, y) ∈ R
2 : γ (x, y) = 0}.

We search for a t ∈ (0, β) cancelling the derivative of x̃(t) cosα + ỹ(t) sin α w.r.t t .
By (11.12) we obtain that x̃ ′(t) cosα + ỹ′(t) sin α = 0 if and only if

− 1√
σ11

sin t cosα − 1√
σ22

sin(t − β) sin α = 0.

Writing sin(t−β) = sin t cosβ−cos t sin β it directly leads to tan t = sin β

1
tan α

√

σ22
σ11

+cosβ
.

Then by (11.9) we obtain tan t = tanω and we deduce that t = ω maximizes
x̃(t) cosα + ỹ(t) sin α and therefore (x(α), y(α)) = (̃x(ω), ỹ(ω)).
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Poles

Let us recall that x∗ is the pole of ϕ2(x) (when x∗ > 0), and y∗∗ is the pole of ϕ1(y)
(when y∗∗ > 0), see Proposition 3.4.We defined α∗ and α∗∗ such that x(α∗) = x∗ and
y(α∗∗) = y∗∗. Now, we may define the corresponding ω∗ and ω∗∗ linked by formula
(11.9) and such that

x∗ = x̃(ω∗) = x̃(−ω∗) and y∗∗ = ỹ(ω∗∗) = ỹ(2β − ω∗∗). (11.14)

Proposition 11.2 (Poles in polar coordinate) We have

ω∗ = θ − 2δ and ω∗∗ = θ + 2ε. (11.15)

We have, α < α∗ if and only if ω < ω∗, and α > α∗∗ if and only if ω > ω∗∗. Then,
x∗ is the pole of ϕ2(x) if and only if θ − 2δ > 0, and y∗∗ is a pole of ϕ1(y) if and only
if θ + 2ε < β.

Proof When the pole of ϕ2 exists, we have γ2(x∗,Y−(x∗)) = 0. Let us recall that
in (6.2) we defined y∗ := Y+(x∗) = ỹ(ω∗). Therefore, we have Y−(x∗) = ỹ(−ω∗).
We are looking for the solutions of the equation

γ2(̃x(t), ỹ(t)) = 0, (11.16)

which is the intersectionof the ellipseE and the lineγ2 = 0.There are two solutions, the
first one is elementary and is given by t = θ , that is (̃x(t), ỹ(t)) = (0, 0). The second
one is by definition (̃x(−ω∗), ỹ(−ω∗)) = (x∗,Y−(x∗)). By (11.12), the Eq. (11.16)
gives

r12
1√
σ11

sin

(−ω∗ + θ

2

)

+ r22
1√
σ22

sin

(−ω∗ + θ

2
− β

)

= 0

With some basic trigonometry, we obtain that

tan
−ω∗ + θ

2
= sin β

r12
r22

√

σ22
σ11

+ cosβ
= tan(δ).

We deduce that ω∗ = θ − 2δ. A symmetric computation leads to ω∗∗ = θ + 2ε.
The necessary and sufficient condition for the existence of the poles comes from
Proposition 3.4. The inequalities on α transfer to ω by equation (11.9).

Asymptotics in the cone

We now compute the exponential decay rate in terms of the polar coordinate in the
cone.
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Proposition 11.3 (Exponential decay rate) For α and ω previously defined and linked
by (11.9) we have

r cos(α)x(α) + r sin(α)y(α) = 2ρ|μ̃| sin2
(

ω − θ

2

)

(11.17)

and

r cos(α)x(α∗) + r sin(α)y(α∗) = 2ρ|μ̃| sin2
(

2ω − ω∗ − θ

2

)

. (11.18)

Proof By Equations (11.8) and (11.13) we obtain the desired result.

Proofs of Theorems 1, 2 and 3 Equation (11.5) and Propositions 11.1, 11.2, 11.3 com-
bined to Theorem 4 (resp. Theorems 5 and 6), lead to Theorem 1 (resp. Theorems 2
and 3).

Appendix A: Parameter-dependent Morse lemma

The following lemma is a parameter-dependent Morse lemma. Although it is an intu-
itive result, we could not find it in the existing literature.

Lemma A.1 Assume that α0 ∈ R is a constant, α �→ x(α) is a function which is
C∞ near α0, and (x, α) �→ F(x, α) is a function which is analytic as a function of
the first variable x and C∞ as a function of the second variable α near (x(α0), α0).
Furthermore, assume that for all α near α0 we have

F(x(α), α) = 0, F ′
x (x(α), α) = 0, F ′′(x(α), α) > 0.

There exists a neighborhood of (0, α0) in C × R

�(0, α0) = {(ω, α) ∈ C × R : |ω| ≤ K , |α − α0| ≤ η}

with some K , η > 0 and a function x(ω, α) defined in �(0, α0) such that

F(x(ω, α), α) = ω2, ∀ω : |ω| ≤ K

x(0, α) = x(α) ∀α : |α − α0| ≤ η.

Furthermore x(ω, α) is in the class C∞ as function of three real variables 
ω,�ω, α

and holomorphic of ω for any fixed α. Finally

x ′
ω(0, α) =

√

2

F ′′
x (x(α), α))

. (A.1)
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Proof This is an adaptation of Morse’s lemma to the dependence of the parameter α.
Consider T (z, α) = F(z+x(α), α). Then T (0, α) = 0, T ′

z (0, α) = 0 and T ′′
z (0, α) =

F ′′
x (x(α), α) > 0 for any α close to α0. Then the following representation holds

T (z, α) = z2F ′′
x (x(α), α)/2 + z3h(z, α) (A.2)

which allows us to define

S(z, α) = z
√

F ′′
x (x(α), α)/2 + zh(z, γ )

with one of two branches of the square root. Let us choose the one that takes the value
+F ′′

x (x(α), α)/2 at z = 0. Due to elementary properties of the function F and the fact
that x(α) is in class C∞, the function h(z, α) in the representation of T above is in
class C∞ in a neighborhood ofO(0, α0) ⊂ C×R as a function of three real variables
and also holomorphic in z for any fixed α. Furthermore,

S′
z(0, α0) = F ′′

x (x(α0), α0)/2 �= 0. (A.3)

Then by the implicit function theorem (the real one to establish the announced prop-
erties in R3 and the complex one to show the holomorphicity), there exists a function
z(ω, α) in a neighborhood of (0, α0) which is in the class C∞ in three variables and
holomorphic in ω such that

S(z(ω, α), α) ≡ ω, z(0, α0) = 0. (A.4)

This means that T (z(ω, α), α) ≡ ω2 for any couple (ω, α) in this neighborhood. In
particular, the function z(0, α) solves the equation S(z, α) ≡ 0 in the variable z. Since
S′
z(0, α0) �= 0, a function in the class C∞ of a real variable α satisfying this equation

and vanishing at α0 is unique by the implicit function theorem. But we know already
that S(0, α) = 0 for any α close to α0. Hence, z(0, α) ≡ 0 for any α close to α0.

Now, let

x(ω, α) = z(ω, α) + x(α),

where x(α) is in the class C∞. It satisfies all expected properties. Furthermore
F(x(ω, α), α) ≡ ω2. Differentiating this identity twice, we obtain (A.1).

Appendix B: Technical results

This following lemma is useful in Sect. 10 for finding out how the asymptotics behave
as the saddle point approaches the pole.

Lemma B.1 (i) If C > 0 is such that C2 ≥ 1 + B2

A2 , then

|s|
|s + i(A + i B)| ≤ C ∀s ∈ R.
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(ii) Let |A| → ∞ and B = o(A) as |A| → ∞. Then

∫ ∞

−∞
exp(−s2)

s + i(A + i B)
ds ∼

√
π

i(A + i B)
.

(iii) Let

�(w) =
∫ ∞

−∞
exp(−s2)

s + iw
ds

with 
w �= 0. This function is holomorphic in each half plane {w : 
w > 0} and
{w : 
w < 0} and can be made explicit:

�(w) = π i exp(w2)(1 − 
(−w)) ∀w : 
w < 0

�(w) = −π i exp(w2)(1 − 
(w)) ∀z : 
w > 0

where 
(w) = 2√
π

∫ w

0 exp(−s2)ds.

Proof (i) Elementary computation.

(ii) We have
∫ ∞
−∞

exp(−s2)
i(A+i B)

ds =
√

π

i(A+i B)
. It suffices to show that

∫

R

|s|
|s + i(A + i B)| exp(−s2)ds

converges to 0 for any Awith absolute value large enough to have |A|
|B| ≥ 1. Then by

(i) |s|
|s+i(A+i B)| ≤ 2 for any s ∈ R. Since the integral

∫

R
2 exp(−s2)ds converges,

the dominated convergence theorem applies and we get the stated asymptotics.
(iii) Let us define for any z > 0 and w > 0

�(z, w) =
∫ ∞

−∞
exp(−zs2)

s + iw
ds.

Then

�′
z(z, w) =

∫ ∞

−∞
−s2 exp(−zs2)

s + iw
ds =

∫ ∞

−∞
((iw)2 − s2 − (iw)2) exp(−zs2)

s + iw
ds

=
∫ ∞

−∞
(iw − s) exp(−zs2)ds + w2

∫ ∞

−∞
exp(−zs2)

s + iw
ds

= iw

√

π

z
+ w2�(w, z).

Solving this differential equation, we get that �(w, z) = c(w, z) exp(w2z) where

c′
z(w, z) = iw

√

π
z exp(−w2z). Taking into account the fact that �(+∞, w) = 0,

123



Queueing Systems

we obtain

�(z, w) = −iw
√

π exp(w2z)
∫ ∞

z
t−1/2 exp(−w2t)dt = −iw

√
π exp(w2z)

∫ ∞

w
√
z
exp(−s2)ds

= −iwπ exp(w2z)
(

1 − 
(w
√
z)

)

.

Now let z = 1. Then

�(1, w) = −π i exp(w2)(1 − 
(w))

for any real positive w. The holomorphicity of 
(w) in {w ∈ C : 
w > 0}
allows us to prove statement (iii). Finally, we note that for any w with 
w < 0,
�(−w) = −�(w).

Appendix C: Green’s functions near zero and Laplace transforms near
infinity

We introduce the parameter

λ = δ + ε − π

β

where β is the angle of the cone, and ε and δ are the angles of reflection which can be
expressed in terms of the covariancematrix� and the reflectionmatrix R, see Sect. 11.
This parameter λ is well known in the SRBM literature and is usually denoted by α

but to avoid any confusion of notation we have called it λ in this article. It is well
known that existence conditions of the SRBM stated in (2.1) are equivalent to

λ < 1.

Lemma B.2 (Laplace transforms behaviour near infinity and Green’s functions near
zero) For some constants C1 and C2, the Laplace transforms ϕ1 and ϕ2 satisfy

ϕ1(y) ∼ C1y
λ−1 when |y| → ∞ and ϕ2(x) ∼ C2x

λ−1 when |x | → ∞ (C.1)

and their derivatives satisfy

ϕ′
1(y) ∼ C1(λ − 1)yλ−2 when |y| → ∞ and ϕ′

2(x) ∼ C2(λ − 1)xλ−2 when |x | → ∞. (C.2)

Furthermore, the Green’s functions on the boundaries h1 and h2 satisfy

h1(v) ∼ C1�(−λ + 1)v−λ when |v| → 0 and h2(u) ∼ C2�(−λ + 1)u−λ when |u| → 0, (C.3)
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where � is the gamma function.

We give the sketch of the proof of the previous Lemma which relies on the resolution
of Boundary Value Problem studied in [22]. This lemma is not crucial for establishing
the results of this article. It is only used to simplify the proof of Lemma 7.3 which
is useful only in the special case where we are looking for the asymptotics along the
axes.

Sketch of proof The article [22] states in Theorem 11 an explicit expression for the
Laplace transform ϕ1. This result is obtained by solving a Carleman Boundary Value
Problem coming from the functional equation (2.2). The solution is the product of the
solution of the corresponding homogeneous problem and an integral, namely,

ϕ1(y) = X(W (y))

(

1

2π

∫

R−
g(t)

X+(t)

dt

W (y) − W (t)
+ C

)

,

where we have taken the notation of Theorem 11 in [22] and its proof. Since g(t)
X+(s)

converges to 0 when t tends to infinity, the integral 1
2π

∫ 1
0

g(t)
X+(t)

dt
W (y)−W (t) converges

to a constant when y → ∞ by classical complex analysis results, see (5.2.17) of [17].
The function X(W (y)) is the solution to the corresponding homogeneous BVP which
is studied in detail in the recurrent case in [25]. Proposition 19 of [25] shows that
X(W (y))) ∼ yλ−1 when y tends to infinity, which concludes the proof of (C.1).

Integral Hardy-Littlewood Tauberian theorems (see for example Karamata’s the-
orem and Ikehara’s theorem [44, §7.4 & 7.5] and [13, Thm 33.3 & 33.7]) state that,
with some hypotheses, for a function f and its Laplace transform L( f ), for λ � −1,
f (t) ∼ Ct−λ when t → 0 is equivalent to L( f )(x) ∼ C�(−λ + 1)xλ−1 when
x → ∞. Equation (C.3) follows from a Tauberian theorem and from (C.1).

The proof of (C.2) follows from (C.3), from a Tauberian theorem and from the
properties of the derivative of the Laplace transform, namely L(t f (t)) = d

dxL( f )(x).
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